
Issue Number 35

Programming - User Support

~Applications

November I December 1988

All This and Modula-2

$3.00

ISSN , 0748-9331

Is This the Next System Programming Language?

A Short Course in Source Code Generation
Disassembling 8086 Code

Real Computing
The National Semiconductor NS32032

S-100 EPROM Burner
Building the Digital Research Board

Advanced CP/M
ZSDOS and File Systems

RE L-Style Assembly Language for CP/M
and Z- System

Part 1: Choose Your Weapons

ZCPR3 Corner
Shells and Patching WordStar 4.0

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana
59912

406·257-9119

Editor/Publisher
Art Carlson

Art Director
Donna Carlson

Circulation
Donna Carlson

Contributing Editors
Joe Bartel

C. Thomas Hilton
Bill Kibler

Bridger Mitchell
Bruce Morgan

Richard Rodman
Jay Sage

Barry Workman

Entire contents copyright©
1988 by The Computer Journal.

Subscription rates-$16 one
year (6 issues), or $28 two years (12
issues) in the U.S., $22 one year in
Canada and Mexico, and $24 (sur
face) for one year in other coun
tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or
address changes to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, Montana, 59912.

Address all editorial and adver
tising inquiries to: The Computer
Journal, 190 Sullivan Crossroad,
Columbia Falls, MT 59912 phone
(406) 257-9119.

The Lillipute Z-Node sysop has
made his BBS systems available to
the TCJ subscribers. Log in on
both systems (312-649-1730 & 312

664-1730), and leave a message for
SYSOP requesting TCJ access.

The COMPUTER
JOURNAL

Features Issue Number35

November I December 1988

All This and Modula·2
A Pascal-like alternative with scope and parameter
passing controls for resuable modules and
multiprogrammer projects.
by Dave Moore 4

A Short Course in Source Code Generation
Disassembling 8086 software to produce
modifiable assembly language source code.
by Clark A. Calkins 9

Real Computing
The National Semiconductor NS32032 is an
attractive alternative to the Intel and Motorola
CPUs.
by Richard Rodman 16

S·100 EPROM Burner
S-100 is quiet, but not dead. Here is another
project for S-100 hardware hackers.
by Michael Broschat 18

Advanced CP/M
An up-to-date DOS for CP/M including
datestamping, plus details on file structure and
formats.
by Bridger Mitchell 19

REl·Style Assembly language for CP/M and Z·System
Part 1: Choose Your Weapons. Selecting your
CP/M assembler, linker, and debugger.
by Bruce Morgan 27

ZCPR3 Corner
How shells work, cracking code, and remaking
WordStar4.0.
by Jay Sage 29

Columns

Editorial '" 3
Computer Corner by Bill Kibler 40

408-734-1800
Fax:408-734-2939 TLX:4940302

~I::I=ICI

Betteranswers for OEMs.
Little Board/286 is not onlya smaller
answer, it's a better answer ... offering
the packaging flexibility, reliability, low
power consumption and I/O capabilities
OEMs need ... at a very attractive price.
And like all Ampro Little Boardproducts,
Little Board/286 is available through
representatives nationwide, and world
wide. For more information and the name
ofyour nearest Rep, call us today at the
number below. Or, write for Ampro Little
Board/286 product literature.

you see here.
THEAMPRO LITTLE BOARDTM/186

Big power
for smaller systems.
Little Board/286 is the newest
member ofour family ofMS-DOS
compatible Single Board Systems. It gives
you the power ofan AT in the cubic inches
ofahalfheight 5 1/4" disk drive. It requires
no backplane. It's a complete AT-compat
ible system that's functionally equivalent to
the 5-board system above. But, in less than
6% ofthe volume. It runs all AT software.
And its low-power requirement means
high reliability and great performance in
harsh environments.

Compare features. • EGA/CGA/Hercules/MDA
Both systems offer: on a daughterboard
• 8or l2MHz versions with no increase in
• 512Kor IMbyte on-board volume

DRAM • SCSI bus support for a
• 80287 math co-processor wide variety of devices:

option Hard disk to bubble
• Full set ofAT-compatible drives

controllers • On-board IKbit serial
• 2RS232C ports EPROM. 512 bits
• Parallel printer port available for OEMs
• Floppy disk controller • Two byte-wide sockets
• EGA/CGA/Hercules/MDA for EPROM/RAM/

Ideal for embedded & dedicated video options NOVRAM expansion
applications. Thelowpower and tiny • AT-compatible bus (usable as on-board
form factor ofLittle Board/286 are perfect expansion solid-state disk)
for embedded microcomputer applica- • Awide range of expansion • Single voltage operation
tions: data acquisition, controllers, options (+5 VDC only)
portable instruments, telecomrnunica- • IBM-compatible Award • Less than lOW power
tions, diskless workstations, POS terminals ROM BIOS consumption
... virtuallyanywhere that small size and B nl U·ttl • 0-70°C operating COMPUTERS, INCORPORATEDuto y e ran e
completeAT hardware and software Board/286 offers: g 1130 MountainView/Alviso Road
compatibilityare an advantage. • 5.75" x8" form factor 'AT;" Re.'tere<lT"dem,", oflBM C0'l'. Sunnyvale, CA 94089
Reps: Australia-61 3 720-3298; Belgium-32 87 46.90.12; Canada-(604) 438-0028; Denmark-45 3 66 20 20; Finland-358 0 585-322; France-331 4502-1800; Germany, West-49 89 611-6151;
Israel-972-3 49-16-95; Ilaly-39 6 811-9406; Japan-81 3257-2630; Spain-34 3 204-2099; Sweden-46 88 55-DC-65; Swilzertand-41 1 740-41-05; Un~ed Kingdom-44 2 964-35511; USA, contact AMPRO.

(Continued on page 36)

dBC III® from Lattice provides a C
library with functions to perform most of
the basic database operations using
dBASE III compatible files. It can either
create the files for its own use, use dBASE
files provided by someone else, or create
files to be used with dBASE. The fun
ctions are intended to be linked into your
C program. You have to do a lot of
programming, but you have full control
over your program. Using the powerful
resources available to a C programmer
enables you to accomplish tasks which are
very difficult to program in dBASE-and
you, or someone else, can still use dBASE
III with the files. You can distribute the
compiled EXE programs without any

access the files directly without having to
first export the data to an ASCII or other
interchange format. Some programs can
even create and manipulate the files
without ever using dBASE.

One of the improvements in WordStar
Professional Version 5® is the ability to
merge information from dBASE files into
a document. Version 5 also includes their
MailList utility for creating and working
with simple databases, but I haven't had a
chance to check its data file structure.

1st Class Expert Systems Fusion®
program accesses and manipulates
dBASE files, and provides the oppor
tunity for establishing expert system shells
for databases. These expert system inter
faces will be very important in facilitating
database access for end users. We are
working on a full evaluation of Fusion.

Where There's Smoke, There's Fire
Anyone who listens to the national

news must be aware that the Northwestern
portion of the United States is burning up.
We have been casually following the fires
in Yellowstone National Park, which is an
area that we have visited. Now, there is a
very serious fire in Glacier National Park,
which is only about 25 miles away from
us.

We are following the Glacier Park fire
(named the Red Bench Fire) very closely
because it is close to home, and it is affec
ting places and people we know. We
usually take most of our day trips before
Memorial Day or after Labor Day in or
der to avoid the tourists. We had planned
a trip up the Red Meadow Creek drainage
this week-and that's where the fire star
ted! Now, that area is closed. In fact the
whole state is closed to recreational ac
tivity until we get adequate moisture.

In case you've wondered why we aren't
always available to answer the phone, we
often work early in the morning and late
in the evening so that we can spend some
time out in the mountains during the mid
dle of the day. Keep calling till you get us.

de facto Standards
Most of the computer industry standar

ds which directly affect our day-to-day
operations are determined by the market
instead of by formal committees. The
market can only accept or reject what is
offered to it, and we don't always agree
with the choices it makes, but there are
times when we have to go along with it
and to follow the market's lead. It is one
thing to follow our own interests where we
can (and do) work with whatever we
choose, as long as we fully recognize that
this may not be of any interest or use to
anyone else-at least it may not be of any
commercial interest. But, if we want to
benefit financially from the fruits of our
labors, we have to either perform our
work-for-profit in commercially accepted
areas, or else to be a pioneer and convince
the market to follow. And, I'm sure that
you have heard the comment, "You can
always recognize pioneers by the arrows in
their back."

Editor's Page

We have to differentiate between what
we do by matter of choice and what we do
because of economic necessity, and to
clearly separate the two. It would be much
simpler if our personal and commercial in
terests were in entirely separate
fields-but then we wouldn't be working
on something which we enjoy.

One of the current de facto standards is
the 5.25" MS-DOS 360K disk for
mat-which is becoming the standard
format for information exchange, regar
dless of the operating system. We all
realize that our home-brewed 32032 or
68030 system will not run Lotus 1-2-3®
just because it can read the MS-DOS disk
format, but our systems should be able to
read and write data files on an MS-DOS
disk format. Joe Bartel used the MS-DOS
format for his Hawthorne Technology
68000 board, and Richard Rodman is
using it for the NS32 system. Every system
using a 5.25" floppy should either use the
MS-DOS 360K as its native format, or at
least should be able to read and write to
that format. The AMPRO Z80 Little
Board® comes with a utility to transfer
programs between CP/M and MS-DOS
disks, but it does not allow editing or
other operations directly on the MS-DOS
disk. Bridger's DosDisk is a great im
provement, because it allows programs
running on a Z80 CP system to use files
stored on a 360K MS-DOS disk directly
without copying.

There does not seem to be much activity
with the AT 5.25" 1.2 Meg disk format. It
requires special high density disks, 360K
formats written in a 1.2 Meg drive can not
be read reliably in a standard 360k dive,
and I have heard a lot of complaints about
read failures with the 1.2 Meg disks in a
1.2 Meg drive. It appears that this format
may end up being an orphan.

The MS-DOS 3.5" nOK format will
very likely become the de facto data inter
change format for that size disk. There
have been reports of problems with the
3.5" 1.44 Meg, and this may end up being
another orphan.

Another standard is the dBASE III®
file format. There are more and more
programs becoming available which can

"What
we see
011990?"

changes
by the

will
end

The Computer Journal/Issue #35 3

All This and Modula-2
Pascal with Scope and Parameter Passing

by Dave Moore, Cerenkof Computing, Australia

(Les)
(You)

Modula-2 was designed by Niklaus Wirth (pronounced Veert),
the same man who designed Pascal. However, Modula-2 is not
just "Pascal-Over-Extended"; it is a new language in its own
right.

When Niklaus Wirth designed Pascal, he wanted to produce a
language which was s'uitable for beginning students in computing.
Such a language had to be simple to learn but had to also be able
to support the sophisticated algorithms the students would study
in later courses.

Professor Wirth had been a part of the effort to define Algol
68, which is the successor to Algol-60. He had become
disillusioned with the complexity of this language. As a result, he
wanted to show that a simple language could also be a powerful
language.

The motivation for Modula-2 is quite different; Modula-2 is in
tended to be a systems programming language. When the
language was designed, the professor and his colleagues were also
designing a computer which we now know as the' 'Lilith". All the
software for the Lilith, including the operating system, is written
in Modula-2.

An operating system is a large program. It would be impossible
to write such a program as one long piece of code, as is required
by standard Pascal. It would take forever to edit and to compile,
and only one person would be able to work on it at a time: one
hundred man years effort would take one hundred years to com
plete!

A better approach was needed. It must be possible to divide the
task up into modules so that several modules can be written by
different prc;grammers in parallel.

Also, it must be possible for each programmer to specify exac
tly what he is writing-and how to call it-even before he writes
the code. Otherwise, you could not write a module until all the
modules it calls were completed.

Modula-2 allows just this. Programs are divided into modules.
Each Module has two parts, a Definition Module and an Im
plementation Module. The definition module tells the outside
world (of the program) what the module does, and how to access
it. The implementation module actually does the work.

Suppose that you and your friends are working together to
write a program. The first thing you would do is meet together to
break the program into logical pieces, then assign each program
mer one or more of those pieces.

For example, let's suppose that you are writing a flight
simulator. One obvious way to break the program is:

Controls Module (Bill)
Speed, Position, and Attitude Module
Instrument Display Module
Scenery Display Module (Linda)

You have to write an instrument Display module. But the
values you need to display, (airspeed, altitude, etc.), are all part
of the Position, Speed and Attitude module. Before Les leaves the
room, he must write a definition module for his module. It could

4

---LISTING ONE---

MODULE CompDir;

(* CompDir - Compare two directories

Dave Moore
Cerenkof Computing
PO Box 305, Wynnum Central 4178 AUSTRALIA

Call is COMPDIR wild card,wild card,list file [options
Where each wild card produces one of the lists to compare
For example, to compare two discs, do: COMPDIR a:*.* b:*.*
Options are any of the following:
T compare only file type (by default, the whole name is

compared)
(by file type, I mean the (3) characters after the dot)

N compare only file name
C if file names match, check file contents as well
These two options are mutually exclusive

E Output file names which match to list file
A Output file names which have been added to the second

list
D Output file names which have been deleted from the

first list
MOutput files which have been modified to the list file
These options may be combined

The program can be very useful for updating discs based on
their existing contents, which is an area in which sweep is
weak.

This is a modified and enhanced version of the original
CompDir program which was written for expository purposes.
The program is written in FTL Modula-2.

*)

FROM SYSTEM IMPORT ADDRESS,ADR,TSIZE;
FROM Command IMPORT Parameter,Parclass,GetParams;
FROM Terminal IMPORT WriteString,WriteLn,Write;
FROM Sort IMPORT SortRecords;
FROM Files IMPORT FileName,FILE,Create;
FROM GetFiles IMPORT GetNames;
FROM Strings IMPORT Length;
FROM Streams IMPORT

STREAM,Connect,Disconnect,WriteChar,Direction;
IMPORT InOut;
FROM FileOps IMPORT FileCompi

'CaNST MaxFiles=512; (*max files to be matched*)

TYPE
CompClass=(Whole,Name,Type);
FileRecord=RECORD
Device:CHAR;
Name:ARRAY[1 .. 8] OF CHAR;
Type:ARRAY[1 .. 3] OF CHARi
END;

The Computer Journal/Issue #35

PFileNarne=POINTER TO FileRecord;
FileArray=ARRAY[l ..MaxFileS] OF FileRecord;

VAR
Param:ARRAY[1 .. 4] OF Parameter; (*area for command line*)
Count: INTEGER; (*parameters*)

LeftNames,RightNarnes:FileArray;
LeftNarneCount,RightNameCount:INTEGER;

Compclass:CompClass=Wholej
OutputAdded:BOOLEAN=FALSEj
OutputEqual:BOOLEAN=FALSE;
CompareContents:BOOLEAN=FALSE;
OutputDeleted:BOOLEAN=FALSEj
OutputModified:BOOLEAN=FALSE;

ListOpen:BOOLEAN=FALSE;
List:STREAM;
ListF: FILE;

PROCEDURE CrackFileName(Text:ARRAY OF CHAR;VAR
Rec:FileRecord);

(* Convert the text form of a file name to the
expanded form*)

VAR i,j:CARDINAL;
BEGIN

WITH Rec DO
IF Text[l]=':' THEN
Device:=CAP(Text[0]);
i:=2;

ELSE
Device: = I ';

i:=0;
END;

j : =1;

(* pick up file name *)

WHILE (i<=HIGH(Text))
AND (Text[i] <>0x)
AND (Text[i]<>' ,)
AND (Text [i] <>, . ,) DO

IF j <=HIGH(Name) THEN Name[j] :=Text[i] END;
INC(j) ;
INC (i) ;
END;

FOR j:=j TO HIGH(Name) DO Name[j]:=0x END;

(*Note that I use zero instead of blank fill to simplify
listing of the names*)

j : =1;
IF Text[i]='.' THEN INC(i) END;
WHILE (i <=HIGH(Text))

AND (Text[i] <>0x)
AND (Text[i] <>, ,) DO

IF j<=HIGH(Type) THEN Type[j]:=Text[i] END;
INC(j) ;
INC (i) ;
END;

FOR j:=j TO HIGH(Type) DO Type[j]:=0x END;
END; (*WITH*)

END CrackFileName;

PROCEDURE Usagej
BEGIN
WriteLn;
WriteString('Usage is: COMPDIR wild card file name');
WriteString(', wild card file name [, list file]

[/options]') ;
WriteLnjWriteLn;
WriteString(' Options are: ,) jWriteLn;
WriteString(' T compare only file type ');WriteLn;
WriteString(' N compare only file name');WriteLnj
WriteString(' C compare contents of matching

files');WriteLn;
WriteString(' E Output file names which match to list

file') ;WriteLn;

The Computer Journal/Issue #35

look something like this:

DEFINITION MODULE SPAM;
(* Speed Position Attitude Module *)

VAR Altitude,Northing,Easting:INTEGER; (*in meters*)
Bank, Direction,DescentAngle:CARDINAL; (* radians*1024 *)
Speed:CARDINAL; (* meters/second *)

END SPAM.

This definition module contains a list of all the elements of
Les's modules which you can "see" from your module. There will
be other objects which you cannot see. For example, when Les
gets home and starts thinking about how to write his part of the
program, he will decide he needs a variable which gives the angle
of attack of the wing, so he can calculate the amount of lift.

Because this variable ('AnlgleofAttack' say), is not in the
definition module, it is not "visible" to other modules. If later
during testing, the variable is found to contain the wrong value,
Les knows he only has to examine his code for the error: no-one
else in the group can change the variable.

Just as importantly, if he wants to change the way the value is
represented, (such as changing the units used), he knows that it
cannot affect the operation of any other module.

When you write your module, you will IMPORT the items you
want to use. Your module might start like this:

MODULE Instruments;
FROM SPAM IMPORT Altitude,Bank,DescentAngle,

Direction,Speed;

These are the items that you want to use. You have not impor
ted the Easting and Northing variables because you do not need to
display the plane's current position on the instruments. Notice
that Linda will need those variables to determine what can be seen
through the window. She will import those variables, but not
some of the others.

You do not need to redefine your imported objects. By giving
the name of the module and the name of the required object, its
definition is retrieved automatically.

The fact that the original definition is accessed by your module
means that you cannot inadvertently give a writing declaration. In
other languages, this problem can be reduced by using "include"
files. This does not prevent your from changing an include file
and forgetting to recompile all the modules which use it.

With Modula-2, when you link your modules together to form
a completed program, the Modula-2 linker will check that all the
modules are up to date. This prevents your from accidentally
linking in a module which was compiled with an old version of a
definition module-one that may not agree with the current
definition of the module.

Standard Modules
Every Modula-2 compiler comes with a set of standard modules

to perform useful functions. At the very least, you will receive
modules to perform file and terminal input-output and storage
management. Most compilers will also come with other
predefined modules. (Note, FTL Modula-2 includes all defined
standard modules and includes the sources to those files.)

In a good compiler, you will receive these modules in source
code, so that you can modify them for your own requirements
and use them to develop other modules.

These modules make it very easy to write quite sophisticated
programs. Let us look at an example.

I often want to compare two disks to determine what files they
have in common. For example, if you are making a disk to send to
a friend (or a customer), it is very useful to be able to check that
no files have been left off the distribution disk.

Program 1 is a Modula-2 program to do this. It reads the direc
tories of both disks, sorts the file names into alphabetical order,
and prints the file names in two columns with matching file names

5

printed next to each other. For example:

A> CompDir a:*.mod b:*.mod
CAT.MOD

COMPDIR.MOD
LIST.MOD LIST.MOD
XERA.MOD
A>

The program takes the form of a module. Because the module
does not have any symbols which can be used by other modules, it
is not divided into separate definition and implementation parts.
Unlike most other languages, Modula-2 does not have a unique
"main Program" part. Rather, every module may contain
statements which are to be executed when the program is loaded.

The only rule is that, if module A imports module B, then
module B will be initialized first. Thus, in the case of our
program, we know that all the modules it imports are ready to go
when its "main line" executes. At the beginning of the program,
there is a list of IMPORT statements. For example:

FROM Command IMPORT Parameter,Parclass,GetParams;

"Command" is the name of a standard module which comes
. with the FTL Compiler. It interprets the command line used to
call 'the program': "Parameter" and "Parclass" are types while
"GetParams" is the procedure which is called to perform the par
sing.

These IMPORT statements are followed by a number of
declarations which look very much like declarations in Pascal.
Notice that the imported types can be used in exactly the same
way that they would be used if defined locally.

Of the procedure definitions which come next, two are worth
close examination. The first procedure, "Compar", is a key
comparison routine for the supplied sort module. Line 65 of the
program contains a call to the sort procedure in the sort module.
"Compar" is one of the parameters in this procedure call. By
writing a short key comparison procedure, the sort module can be
used to sort any type of data in any collating sequence.

The declaration for this module must exactly match that
required by the procedure in the sort module. The parameter must
be of type:

TYPE KeyProc=PROCEDURE (ADDRESS,ADDRESS):BOOLEAN;

In Modula-2, procedures have types, and can even be used as
the types of variables!

ADDRESS is a standard Modula-2 type which is compatible
with any pointer type. Because the key comparison routine needs
to compare file names, the parameters are changed to have the
type PFileName (POINTER TO FileName) before the com
parison is performed. This is an example of the "type breaking"
facilities in Modula-2: you can tell the compiler to treat a variable
as a different type for the purposes of an expression.

The second interesting procedure is ExpandNames. This
procedure calls GetNames to return a list of file names which
match a wildcard parameter, removes any leading drive
designator and then calls SortRecords to sort the filenames into
order.

Finally, the main program, at lines 97 through 147, calls Get
Params to parse the command line, call ExpandNames to expand
each of the wildcard filenames into a list of matching file names,
and then uses a classical merge algorithm to compare the two files
and print the lists side-by-side.

This program took me no more than two hours to write,
because many of the elements I required already existed and could
be easily accessed using the module structure of Modula-2. In
another language, I would either have spent several hours re
inventing the wheel or else searching for old programs that used
routines like the ones I needed now. What is more, because of the
strong typing, once a clean compile had been obtained, the
program ran at the second attempt.

6

WriteString(' A Output file names which have been added
to the second list');WriteLn;

WriteString(' D Output file names which have been deleted
from the first list');WriteLn;

WriteString(' MOutput file names of modified files
,) ;WriteLn;

WriteString(' (Implies C option)');WriteLn;
HALT
END Usage;

PROCEDURE GetOptions(p:Parameter);
VAR i:CARDINAL;
BEGIN

WITH p" DO
i:=0;
LOOP

CASE Chars[i] OF
0x:EXIT
'T':Compclass:=Type
'N':Compclass:=Name
'E':OutputEqual:=TRUE
'A':OutputAdded:=TRUE
'D':OutputDeleted:=TRUE
'M':OutputModified:=TRUE;

CompareContents:=TRUE
'C':CompareContents:=TRUE
ELSE Usage;
END; (*Usage*)

INC(i);
END;

END; (*WITH*)
END GetOptions;

PROCEDURE Compar(a,b:ADDRESS):BOOLEAN;

(* key comparison routine for the sort modUle
Returns TRUE if a is greater than b

This routine always compares the full name as it is used
for sorting. The equality routine only compares the part
of the name requested by the flags. As a result, a test
for equality should be made first*)

VAR p,q:PFileName;
BEGIN
p: =PFileName (a) ;
q: =PFileName (b) ;
CASE Compclass OF
Type:IF p".Type<>q".Type THEN RETURN p".Type>q".Type

ELSE RETURN p" .Name>q" .Name END;

Name,Whole:IF p".Name<>q".Name THEN RETURN
p" .Name>q" .Name

ELSE RETURN p".Type>q".Type END;
END; (*CASE*)

END Compar;
PROCEDURE Equal(p,q:FileRecord):BOOLEAN;

(* compare to names for equality
patterned after the preceding routine*)

BEGIN
CASE Compclass OF

Type:RETURN p.Type=q.Type
Name:RETURN p.Name=q.Name
Whole:IF p.Name<>q.Name THEN RETURN FALSE

ELSE RETURN p.Type=q.Type END;
END; (*CASE*)

END Equal;

The Computer Journal/Issue #35

PROCEDURE ExpandNames(Param:ParameterjVAR Names:FileArray;
VAR NameCount:INTEGER);

(* Expand wild card file name into list of files
and sort result *)

VAR i,j:INTEGERj
NameText:ARRAY [l .. MaxFiles] OF FileName;
Text:ARRAY[0 .. 5] OF CHAR;

BEGIN
IF (ParamA.Chars[2]=0x) AND (ParamA.Chars[l]=': r) THEN
Text: =r : *. *' ;
Text[0]:=Param A.Chars[0];
GetNames(Text,NameText,NameCount);

ELSE
GetNames(ParamA.Chars,NameText,NameCount)j
END;

(*crack names*)

FOR i:=l TO NameCount DO
CrackFileName(NameText[iJ,Names[iJ);
END;

IF NameCount> 1 THEN
SortRecords(ADR(Names),CARDINAL(NameCount),

TSIZE(FfleRecord),Compar);
END;

END ExpandNames;

VAR i,j:INTEGER;
PROCEDURE WriteToList(VAR N:FileRecord);
BEGIN

WITH N DO
InOut.WriteString(Name);
WriteChar(List, r • r);
InOut.WriteString(Type);
InOut. WriteLn;
END;

END WriteToList;

PROCEDURE WriteName(VAR N:FileRecord;ToList:BOOLEAN);

(* output a file record as a valid file name
IF Tolist, output it to list as well*)

VAR i:CARDINAL;
ch:CHAR;

BEGIN
WITH N DO

IF Device<> I r THEN
ch:= r: I

ELSE
ch::: r r

END;
Write (Device) ;
Write(ch);
IF ToList THEN
WriteChar(List,Device);
WriteChar(List,ch);
END;

WriteString(Name);
Wri te (r • ') ;

WriteString(Type);
IF ToList THEN
WriteToList(N) ;
END;

(*Now pad name out to 16 columns*)

FOR i:=Length(Name)+Length(Type)+4 TO 16 DO
Write(' ,);
END;

END;
END WriteName;

PROCEDURE PrintLeft;
BEGIN

The Computer Journal/Issue #35

FTL Modula-2:
The One to own!

• Runs on MS-DOS, CP1M & the Atari ST
• Programs up to 1 Meg on MS-DOS
• Supports terminals on MS-DOS
• Full library source included
• Fast compiles and links-in memory!
• Assembly-language interface included
• Source to editor only $30 extra!
• Advanced Programmer's Kit has real-time

kernel, debugger and overlayer

Prices:
FrL for CP/M is'imly $49.95!:

FrL for MS-DOS or Atari $99.95

Add $30 for Editor/ToolKit (Editor source) or
Advanced Programmer's Kit. Special: get FfL plus
both for only $99.95 (CP/M) or only $149.95 (MS
DOS or Atari)! Please specify disk format on order;
call for more information. FTL works on PCs, H/Z
laOs, TIs and MS-DOS systems with terminals.

Hard Disk Problems?
We Can Help!

Drive repairs & data recovery
fast and easy!

NWe Bring 'em back alive!"
One Call Does It All:

Drive Repair • File Recovery

We've recovered data from hard disks and
floppies for over three years. Our special tools
make Lotus and dBase recoveries fast. We
work on PCs, Macs, STs, CP1M machines, etc.
Don't panic! Call us instead.

Workman & Associates
1925 East Mountain Street

Pasadena, CA 91104
(818) 791-7979 BBS: (818) 791-1013

SIX: "w.and.a" conference

Please add $3.00 for US shipping, $10.00 overseas. We
accept COD, Visa/MC, checks and some pas. Please
contact us for more information and our free catalog.

7

8

WriteName(LeftNames[i],OutputDeleted);
WriteLn;
END PrintLeft;

PROCEDURE PrintRight;
BEGIN

WriteString (, ,) ;
WriteName(RightNames[j],OutputAdded);
WriteLn;
END PrintRight;

PROCEDURE CompareOK(f1,f2:FileRecord):BOOLEAN;

VAR fn1,fn2:FileName;

PROCEDURE SetName(f:FileRecord;VAR fn:FileName);
VAR i,j:CARDINAL;

PROCEDURE Put(ch:CHAR);
BEGIN
fn[i]::ch;
INC(i); ,
END Put;

BEGIN
i::I2I;
\o{ITH f DO

IF Device<>' , THEN
Put(Device);
Put(' : ');
END;

j ::1;
WHILE (j <:HIGH(Name)) AND (Name[j] <>l2Ix) DO
Put(Name[j]);
INC(j) ;
END;

j : :1;
Put(' . ');
WHILE (j<:HIGH(Type)) AND (Type[j]<>0x) DO
Put(Type[j]);
INC(j);
END;

WHILE i <:HIGH(fn) DO Put (' ') END;
END;

END SetName;
BEGIN
SetName(fl,fnl);
SetName(f2,fn2);
RETURN FileComp(fnl,fn2)
END CompareOK;

VAR reply:INTEGER;
BEGIN

GetParams(Param,Count);
IF (Count>l2I) AND (Param[Count]A.Class:option) THEN
GetOptions(Param[CountJ);
DEC(Count);
END;

IF Count<2 THEN Usage END;
IF Count:J THEN

Create(ListF,FileName(Param[JJA.Chars) ,reply);
IF reply<12I THEN
WriteString(' Could not open output file ');
WriteString(Param[JJA.Chars);
WriteLn;
HALT;
END;

Connect(List,ListF,output);
InOut.SwitchOutStream(List);
ListOpen::TRUE;

ELSE
IF OutputAdded OR OutputDeleted OR

OutputEqual OR OutputModified THEN
WriteString(' AD E and Moptions require output file

name$')
WriteLn;

Usage;
END;

END;
ExpandNames(Param[l],LeftNames,LeftNameCount);
ExpandNames(Param[2],RightNames,RightNameCount);

(*now perform merge pass of two lists*)

i::1;
j : :1;
WHILE (i<:LeftNameCount) AND (j<:RightNameCount) DO

IF Equal(LeftNames[i],RightNames[j]) THEN

WriteName(LeftNames[i],OutputEqual);
WriteName(RightNames[j] ,FALSE);
IF CompareContents AND

NOT CompareOK(LeftNames[i],RightNames[j]) THEN
WriteString(' Files Differ ');
IF OutputModified THEN
WriteToList(LeftNames[iJ);
END;

END;
WriteLn;
INC(i);
INC(j) ;

ELSIF NOT Compar(ADR(LeftNames[i]),ADR(RightNames[j]))
THEN

PrintLeft;
INC(i) ;

ELSE (*Leftnames[i]>RightNames[j]*)

PrintRight;
INC(j) ;
END; (*IF*)

END; (*WHILE*)

(*process stragglers*)

WHILE i<:LeftNameCount DO
PrintLeft;
INC(i);
END;

WHILE j<:RightNameCount DO
PrintRight;
INC(j) ;
END;

IF ListOpen THEN
Disconnect(List,TRUE);
END;

END CompDir.

If you do a lot of programming, you probably have modules to
perform sorting, command line parsing, and wildcard expansion.
But how long will it take you to find them? When you do find
them, how much will you need to change them to meet your new
requirements?

With Modula-2, you can build up a library of useful modules,
and the definition module construct makes finding routines
relatively easy. Also, as demonstrated by the use of the Sort
module in the example program, although the language lacks the
"generic" facilities of Ada, it is powerful enough to support the
writing of re-usable modules in a clean and streamlined way.

Modula-2 is an Ideal language for writing large programs,
especially on small machines or when memory space is limited.
Even on large machines, many experts argue that Modula-2 as a
better language than Ada, Pascal, and C because of its relative
simplicity and portability.•

Editor's Note: This is the beginning oj a regular section
covering Modula-2, which will include apublic domain user's disk
(ibrary. Your articles, letters, comments, and disk contributions
are needed to make it grow!

The Computer Journal/Issue #35

A Short Course in Source Code Generation
Disassembling 8086 Software

by Clark A. Calkins, C.C. Software

Eitor's Note: A similar article covering source code generation
for Z80 systems was published in issue #27.

Introduction

What is source code generation all about? Well, I consider this
as the process of creating usable program source code in some
language that is equivalent to an "initial executable program. By
usable I mean that the source code has been sufficiently documen
ted or commented such that you or someone else schooled in the
language can understand what is going on.

If you already have an executable program, why would anyone
want the source code? The truth is, many users would not. But if
you ever wanted to change a program, source code makes it much
easier. In some cases, it is not practical to change a program
without the source. Besides the necessity or desire to change a
program, some people would just like to understand how it
works.

Why is it that software producers very seldom make source
code available for their products? There are several reasons (or
excuses) for not releasing the source code. These include:

1) " ... you don't need it, program XYZ works perfectly as it
is. "

2) " .. "you could then make copies and give these to others."
3) " ... it's too complicated, you couldn't understand it."

and so on. Actually, the real reason is that software writers feel
that their programs represent private and creative thoughts and
they loose privacy if the source code gets out of their control.
There is a mystique to writing programs and programmers tend to
keep it that way. A form of "job security."

However, users do have a legitimate requirement for source
code. After all, the programmer wrote the program to do what
he/she thought was the best. Users generally have different ideas.
Program options are set to default values that the programmer
found to be most convenient. Users may like to change these.
Some programs come with installation instructions that do allow
some flexibility in this regard, but this is not always enough. If
you ever wanted to learn how to write an operating system or
compiler and only had a book or two for reference, you would
then see the advantage of having some source code to refer to.
This is indispensable!

Can the source code for any program be produced?
Theoretically the answer is yes. However, from a practical stan
dpoint, only a few programs would be worth the effort involved.
The idea to keep in mind, is that if the computer can execute the
program, it can be disassembled. This is because the process of
disassembling a program is really a conversion from one language
(machine code) to another. Like translating a book from German
to English except there are no ambiguities to worry about.
Documenting the program now involves just time and effort
(maybe quite a lot of these).

The specific type of source code generation I am going to be
dealing with here, is the creation of 8086 assembly source code. If

The Computer Journal/Issue #35

Disclaimer
The guidelines contained herein are for educational purposes

only. The legality of disassembling a program is not totally free
from doubt (although it is done on a routine basis). Software
licenses may impose limitiations that the user should be awre of.
It is certainly not the intent of this article to deprive any software
producers of rightfully earned revenues.

it were desired to create Pascal or Fortran source code (assuming
the program was written in one of these languages), the first step
would be to produce assembly instructions and then convert
groups of instructions into source statements. This would require
a thorough understanding of the code produced by the compiler.
A difficult task indeed, but it can be done.

In addition, I will be assuming that MS-DOS is the operating
system being used and that it is desired to disassemble a normal
transient program and not a ROM or other type of program
storage. These are slightly more complicated as the execution ad
dress may differ from the physical address.

The disassembler I will be using for the examples is my own (the
Masterful Disassembler or MD86 for short) but most any quality
disassembler can be used. I will try to keep this as "generic" as
possible, but the figures will come directly from MD86 screen
displays.

The choice of a disassembler is important. You want it to do as
much of the work as possible. The features I find indispensable
are:

• Interactive and visually oriented.
• Ability to add your own names for labels.
• Ability to insert comments.
• Support for many data types.

In addition, a disassembler can be more helpful if it can:

• Recognize the 80x87 and 80x86 instruction sets,
• Mark "questionable" instruction sequences,
• Automatically insert helpful comments,
• Recognize common MS-DOS functions.

If the disassembler you use does not allow label names and
comments to be entered, then you will have to work from a prin
ted listing and use an editor to keep track of things. This is a lot
more trouble on large disassemblies because up-to-date listings
may take hours to generate and you will be tempted to try and get
by with older ones. This will sooner or later cause duplication of
effort as you re-comment some areas a second time.

The examples I will be using have come from actual programs
but the addresses listed are fictitious. These have been chosen to
cover a few key areas of disassembling but are by no means
exhaustive.

Disassembling programs is more art than science. After you
have done one, the next becomes easier. Just like programming.

9

11»86 Y2 is OKLY $67.50 ($1.50 sQ) + tax

C.C. Software, 1907 Alvarado Ave., Walnut
Cleek, CA 94596, (415) 939-8153

WELL NOW YOU CAN HAVE IT! The IIASTKltFDL
DISA5SKIIlILEK. (!!D86) viII create MASH co.pacible
source code from program files (EXE or COM).
And the files are labeled and co••ented so
they become USEABLE. HD86 is an interactive
dis ass e .. b 1 e r v i t han e a s1' to use., v 0 r d
processor like interface (this is crucial for
the REAL progra.s you vant to disassemble).
With its built-in help screens you

von't have to constantly refer to ~

the .anual either (although

there are valnable diSCUS-~ lC'j
sions on the ins and outs
of disassembling vhich ~ I'

yotl won't vant to miss). ,J ;::::::;
..,... c:....r.'·

~86 is a professionally
supported product and yet costs
no more than "sharevare". And of course. it's
not copy protected. YDSIOII 2 .., AYAII.ABLKI

Choosing the Proper Candidates for Dissection

Before setting out to produce source code for that super new
program, you first want to know if you can succeed. There are
some guide lines that I use before I embark on a new project. I ask
myself these questions:

• Is there a real use for the source code for this program?
• Is the program small enough that I can complete this project

in a reasonable amount of time?
• Was the program written in assembly or at least compiled

with a good (non-threaded) compiler?
• Is the program static or does it move itself around in

memory?

The answers to these questions, when taken together, help me
to decide whether or not to try to disassemble a program. I really
try to avoid programs that have been written in a high level
language. These can be real messy. The program size is also very
important. I have found that, on the average, every processor in
struction, uses 2 bytes of memory if it is 8086 code. Data areas
seem to average 4 bytes per line. This means that an 8k program
would result in 3000 lines of code if it contained about 2k of data
tables. A final source file for this may take up lOOk of disk space.
I don't recommend users try disassembling programs in excess of
16k.

I have disassembled many programs over the years. Some times
for fun and other times on a consulting basis. When I am trying to
estimate the number of hours required to disassemble a program,
I use the following formula.

ManHours = 3.5 * (PrograrIL-size_ifL-kbytes)" 1.5

This assumes that the program is written in assembly language
and contains 20010 data and 80010 instructions. This would prove
to be overly optomistic on hardware dependent type programs
(like a BIOS or disk formatter) and pessimistic on real short
programs « lk). So far this has proven to be a reasonable star
ting point. If a 4k program were to take you a couple of weeks,
then a 32k program would take a year. And a l28k program over
7 years! Now you can see why the program length is so important!

How can you tell if a program was originally written in assem
bly language and is this really important? With some of today's
optimizing compilers, this question becomes less important. But
in general, when I first look at a disassembly of a program I want
to see if there is a consistent flow of logic to the code. When I see
code that is composed of a seemingly endless series of calls to
subroutines grouped at one end of the program (either low or high
addresses), I know this came from a threaded type compiler and
will be a bear to disassemble. I like to see subroutine calls
followed by code that uses the 8086 flag register (like "CALL
1234" followed by "JZ 1267"). This is the way assembly
programmers work but few compilers are smart enough to do
this. Most would have inserted a "AND AX,AX" or similar in
struction. Additionally, compilers produce code that executes un
der all conceivable conditions. Thus there will be many long or far
jump instructions and few short (2 byte) ones. One special note
about Nap instructions. Assemblers, particularly MASM, insert
Naps as filler bytes. If these follow a short jump instruction, this
would not indicate that a compiler was used. However, if a Nap
is the destination of a jump instruction then the odds are good
that a compiler produced the code (and not a particularly good
one at that). If you find that you cannot tell if the code was
produced by a compiler or an assembler, then it probably does
not make much difference.

Over the years, users have suggested various projects for
disassembly. These have ranged from fairly reasonable ones like
MS-DOS, and Turbo C to absurd ones like EDLIN and LOTUS
123. Who even uses EDLIN and who has enough time to
disassemble LOTUS? Some of the Norton Utility programs (like
SI.EXE) would make reasonable projects.

The Process of Generating Usable Source Code

Prior to disassembling a program you want to learn as much as
you can about how it works. You need to know exactly what the
program does and have a reasonable idea of how it does it. When
you understand what a program does on a gross level, you will be
able to understand the finer details when you get to them.

When I start on a disassembly project, I find it is generally a
four step process.

• Understand what the program does and how it functions.
• Identify the instruction and data areas. Determine the type of

data being stored.
• Isolate the subroutines (identify the lowest level ones first).

Label and comment these routines.
• Comment and label the main program code.
The first step of this process occurs before you use the

disassembler. You will want to look over as much material (user
manuals, reference manuals, etc.) as you can. Initially you will be
most interested in locating parts of the program in memory.
Hopefully the reference manual contains a memory usage map or
words to describe how memory is allocated and what use is made
of it.

The three remaining phases are concerned with using the
disassembler to produce an ASCII source code file (also called a
text file), The first phase is to identify the type of data the
program is composed of. Programs consist of machine instruc
tions and various types of data. But which is which? You must
follow the logic to tell. The only technical difference is that
machine instructions are executed while data is referenced. It is

SOURCE?lYOU WANT THE

10 The Computer Journal/Issue #35

Figure Ib, Typical Display Of Partially Disassembled Program

Figure Ie, Typical Display Of Partially Disassembled Program

Figure la, Typical Display Of Partially Disassembled Program

;Load DS:DX with 32b pointe

;Convert (AX) to dbl word

;Convert word (AX) to dbl w
o cmnts No Edit 10/]/87 10:20:]5

(continued)

Convert (AX) to dbl word

;Convert byte (AL) to word
CS:[L12A1H],0FFH;
L12ACH

;Convert byte (AL) to word
CS:[L12A1Hl,0FFH;
L12ACH

SI,#L1150H
L0EA5H
L2E61H
'Unknown version ';
'of Turbo' ,CR,LF,0;
0FFH

SI,#L1150H
L0EA5H
L2E61H
rUnknown version I;

'of Turbo' ,CR,LF,0;
0FFH

;Convert byte (AL) to word
CS:[L12A1Hl,0FFH;
112AFH

SI,#L1150H
L0EA5H
L2E61H
BP
06EH
06BH
06EH
06FH
L12FBH
[BP]+65H,DH
L1305H
069H
06FH
06EH
[BX]+66H,CH
[SI1+75H,DL
L12FFH
06FH
AX,#L000AH
0FFH

MOV
CALL
JMP
DB
DB
DB
CBW
CMP
JZ
CWD
RET

MOV
CALL
JMP
DB
DB
DB
CBW
CMP
JZ
CWD
RET
MOV CS:[L0807Hl,#09;
RET
LES AX,BP
MOV BH,C8

L12B9H CALL L0F82H
MOV AX, [BP1+16H
MOV [L018AH1,AX
MOV AX, [BP1+4
MOV [L018CH1,AX
PUSH DS
LDS DX,[LllAAH]
MOV AL,#10H
MSDOS _SIVEC ;Set vector.

Types= 21/ 4%, 0 cmnts No Edit 10/ 3/87 10:20:35

MOV
CALL
JMP

L1286H PUSH
DB
DB
DB
DB
JA
AND
JC
DB
DB
DB
AND
AND
JC
DB
OR

?L12A1H DB
L12A2H CBW

CMP
JZ
CWD

Types= 21/ 4%,

127D: BE5011
1280:E822FC
128]:E9DB1B
1286:556E6B6E6F77 L1286H
1296:6F6620547572
12Al:FF L12Al
12A2:9C L12A2H
12A3:2E803EAl12FF
12A9:7404
12AB:9D
12AC:C3 L12ACH

127D: BE5011
1280:E822FC
128] :E9DB1B
1286:556E6B6E6F77 L1286H
1296:6F6620547572
12Al:FF L12Al
12A2:9C L12A2H
12A]:2E80]EAl12FF
12A9:7404
12AB:9D
12AC:C] L12ACH
12AD:2EC606070809 L12ADH
12B]:C]
12B4:C4c5
12B6:C6C7C8
12B9:E8C6FC
12BE:8B4616
12Cl:A]8A01
12C4:8B4604
12C7:A]8C01
12CA:1E
12CB:C516AA11
12CF:B010
12Dl:B425CD21
CS:: Labels= 492/23%,

127D: BE5011
1280:E822FC
128]:E9DB1B
1286:55
1287:6E
1288:6B
1289:6E
128A:6F
128B:776E
128D:207665
1290: 727]
1292:69
129]:6F
1294:6E
1295:206F66
1298:205475
129B:7262
129D:6F
129E:0D0A00
12Al:FF
12A2:9C
12A]:2E80]EAl12FF
12A9:7404
12AB:9D
CS:: Labels= 492/2]%,

quite possible for instructions in one part
of a program to be data to another part.
With the different segments of the Intel
8086 this is not very common. But it is cer
tainly possible.

Once the program has been divided into
instruction and data areas, the next phase
begins. This is the process of identifying
the different logical sections. This is
usually the most difficult and time con
suming part. It is not easy to understand
what purpose a sequence of instructions
has, but with persistence this can be done.

The final stage involves generating an
assembler source file and getting it to re
assemble properly. Disassemblers are only
"human." Their output may assemble
without error but it probably won't be a
byte-for-byte copy of the original file.
Some "touch-up" will be required to rec
tify such things as long and short jumps.
While you are at it, you could clean up the
comments and "pretty up" the source
file.

Note before I go on with examples, I
am assuming that the disassembler used
will maintain a table of addresses that
have been referenced. It that way it would
"know" if a label should be included on a
particular line or not. Since this table, or
label pool, can only be built by looking at
the entire program, it will be incomplete
when you start and become progressively
more accurate as the program is disassem
bled.

Identifying Data Types
There is a real knack to separating the

code into data and instruction areas.
Assemblers that mark questionable in
structions go a long way in making this
easier. What are questionable instructions
you ask? Well, these are either 1) invalid
instructions (those that the 8086 processor
does not understand), 2) meaningless in
structions, or 3) very rarely used instruc
tions.

Initially I will assume that the entire
code segment is made up of instructions.
The data segment (EXE type programs
only) would all be pure binary data.
However, most of the time this is not the
case. It is very common to find character
strings imbedded within the code as well
as normal data areas. If questionable in
structions exist, examine the lines above
and below to determine where the instruc
tions end and data begins. Of course it is
possible that instructions seem
questionable at first and later turn out to
be correct. In fact this happens all of the
time.

There are five basic rules that can be
used to determine data area types. When
you go to identify data areas, make sure
these rules have been satisfied. If not, be
very suspicious.

• Rule I-The instruction preceeding a
data area must be a transfer (jump, call,

The Computer Journal/Issue #35 11

Figure II, Sample Disassembly of EXE2BIN.EXE

Figure III, The Program Segment Prefix Summary

0012 Hard error exit. 2 byte offset and 2 byte segment.

0002 System memory size in paragraphs (16 byte blocks). This is a
16 bit integer.

;Set vector.

Contents

DB 2EH,0C6H,6,7,8,9,0C3H;
DB 0C4H,0C5H,0C6H,0C7H;
DB 0C8H

L12B9H CALL L0F82H
MOV AX, [BP]+16H
MOV [L018AH],AX
MOV AX, [BP]+4
MOV [L018CH],AX
PUSH DS
LDS DX,[L11AAH] ;Load DS:DX with 32b pointe
MOV AL,#10H
MSDOS _SIVEC
POP DS

Types: 21/ 4%, 0 cmnts No Edit 10/ 3/87 10:20:35

005C Unopened file control block for first file specified after
command. Only valid if a path is not specified.

000E Control-C exit address. First 2 bytes are offset and second
2 bytes are the segment.

006C Unopened file control block for second file specified after
command. Only valid if a path is not specified.

0080 Entire text string that follows the command. The first byte
is a character count. Note redirection information is not
passed on to the program (it is stripped first).

0000:1E PUSH DS
0001:33C0 XOR AX,AX
0003:50 PUSH AX
0004:B430CD21 MSDOS _GETVER ;Get DOS version number
0008:3C02 CMP AL,2
000A:7D13 JGE L001FH
000C:BB3900 MOV BX,#L0039H
000F:8EDB MOV DS,BX
0011:BA5B01 MOV DX,#L015BH
0014:0E PUGH CS
0015: 1F POP OS
0016:B409CD21 MSDOS _OUTSTR ;Display string at (DS:
001A:06 PUSH ES
001B:33C0 XOR AX,AX
0010:50 PUSH AX
001E:CB RET ;*** FAR RETURN ***
001F:BE8100 L001FH MOV SI, #L0081H
0022:BB3900 MOV • BX, #L0039H
0025:8EC3 MOV ES,BX
0027:8B1E0200 MOV BX,[L0002H]
002B:E82B01 CALL L0159H
002E:7308 JNC L0038H
0030:06 PUSH ES
0031:1F POP OS
0032:BA9001 MOV DX,#L0190H
CS:: Labels: 164/ 7%, Types: 3/ 0%, ., cmnts No Edit 11/ 5/87 3:12: 2

12AD:2EC606070809 L12ADH
12B4:C4C5C6C7
12B8:C8
12B9:E8C6FC
12BC:8B4616
12BF:A38A01
12C2:8B4604
12C5: A38C01
12C8: 1E
12C9:C516AA11
12CD:B010
12CF': B425CD21
12D3: 1F
CS:: Labels: 492/23%,

Offset

interupt, or return). Conditional jumps
would not be allowed.

• Rule 2-The first instruction in an in
struction area must have a label unless the
preceeding data area was an argument to a
call or interupt instruction.

• Rule 3-An absolute transfer of con
trol Gump or return) may be followed
only by a labeled instruction or a labeled
data area.

• Rule 4-For the type of data to
change (from instructions to data or from
ASCII data to 16-bit address data etc.),
the first line of the newer type must have a
label.

• Rule 5-ASCII character data (in
cluding carriage returns, line feeds, etc.)
must either begin with a character count
byte (or word) or it must end with with a
special byte. It is common within MS
DOS applications that character strings
end with a dollar sign. This is the way the
console output. and printer output fun
ctions know the end of a string. Assembly
programmers also like to use null charac
ters (value of zero) as an end of string
mark. The Intel 8086 processor can easily
detect these.

For purposes of an example, Figures la
through Ie will be used. This is fairly
typical of the kind of code you will en
counter. But be forewarned, by its very
nature assembly code can be very obscure.
If the programmer wishes, it could be ex
tremely difficult to decipher.

Refering to Figure la, note how several
lines have been marked as "questionable"
(note, MD86 inserts a question mark in
front of the label field). Here it is obvious
that the lines following the jump instruc
tion at address 1283 cannot be instruc
tions. The PUSH instruction at address
1286 is erroneous because of rule #1.
Notice how most of the bytes following
address 1283 have a value in the range 20
to 7E (hex). It is quite possible that this
area consists mainly of ASCII characters.
But where does this area end? Rule #2 says
we should look for the next valid instruc
tion line containing a label. In this exam
ple we find this at address 12A2. A word
of caution here. Since we may not have
disassembled the entire program, the label
pool may be incomplete. It is then
possible that at this time an instruction
does not have a label. We need to be
cautious in the application of rule #2.

As a first step, we change the area from
1286 to 12Al from instructions to ASCII
characters. The code now makes more
sense (see Figure Ib). But now notice ad
dress 12B4. This instruction does not have
a label and yet it follows an unconditional
transfer (return) instruction. Rule #3 says
this is not correct. Now it could be that
there should be a label here and we have
just not disassembled the section of code
that references it, but the instructions
don't look right do they?

12 The Computer Journal/Issue #35

The contents of these areas are then added to the address label
pool. When disassembled, these areas will have a label to let you
know that they are referenced somewhere.

Notice how the first address of this table has a reference. Rule 4
indicates that this is required. However this is not strictly true. It
is possible that the beginning of this area is implied by the end of
the previous structure. One common approach is to have a
sequence of flag bytes that is followed by a corresponding address
table. Because the program "knows" how long the leading byte
table is, it then knows the start of the address table.

More than likely, address references present within the data
segment refer to offsets within the code segment. If your
disassembler does not make this assumption, then the label table
may have to be fixed by hand. As much as possible, you want to
avoid contamination of the label table with erroneous references.
This just makes life more difficult.

Understanding the Code
This is the part you have been waiting for. The real guts of the

job! You have now separated all data from instructions, but what
do the instructions mean?

The Intel 8086 executes instructions in a logical order; the order
chosen by the programmer. To truly understand the function of
the instructions you must know how they are executed. For
example, just knowing the instruction

123A: 2C07 SUB AL,7

will subtract 7 from the contents of register AL is not very help
ful. However, if the surrounding instructions were

1234:8A07 MOV AL, [BX]
1236: 3C3A CMP AL, , : I

1238: 7202 JC L123BH
123A:2C07 SUB AL,7
123B:2C30 L123BH SUB AL, '0'
123D:8807 MOV [BX],AL

you then have the feeling that register BX is pointing to one or

The hex sequences 06,07,08,
09, and C3, C4, C5, C6, C7, C8 would not likely be instructions
(although obviously possible). It looks more like numbers or
data. In fact the whole area from address l2AD up to 12B8 does
not look like instructions at all. Most probably this is just a data
area containing numerical values. And 8-bit values at that. If they
were 16-bit values (or addresses), they would be way beyond the
bounds of our code.

This area is then changed into binary data (8-bit) from instruc
tions. Figure Ie shows what the screen looks like now. Compare
this with Figure Ia and you can see the improvement. In this way
areas of the program are disassembled one section at a time.
Progress at first seems slow I realize, but after a while the pieces
start to fit together. As you begin to understand these small por
tions, the remainder of the program becomes that much easier.
You are well on your way to a useful source file.

For EXE type programs, there is a separate data segment to
worry about. While this probably does not contain instructions, it
is still necessary to determine if there are any address references
stored here. If there are, then they should be identified as such so
they can be entered into the label pool.

In some cases tables of addresses can be spotted easily. If most
of the addresses are close (within a few pages) then you will see
similar hexadecimal values every other byte. For example:

12J4:017F097FOF7F L12J4H DB 1,7FH,9,7FH,OFH,7FH;
12JA:1J7F4F7Fl080 DB lJH,7FH,4FH,7FH,10H,80H;

When these areas are changed into 16-bit addresses then they
appear as follows.

is replaced with a single macro instruction

12J4:B409CD21 MSDOS _OUTSTR ;Display string at (DX)

In this way you can identify the lowest level routines. Those
that write characters to the screen or read the keyboard. How
about opening and closing files and input and output from the
communications ports? Generally these are short subroutines
«100 lines) that you can comprehend. Try to find as many of
these routines as possible and give each one a name that will help
you to remember what it does. Also toss in as many comments as
you can.

Once the lowest level routines have been worked on, the next

MOV AL,9
INT 21H

1234:B409
1236:CD21

more bytes. And if these bytes are greater than the digit 9 (the
character":" is just past the digit "9" in the ASCII character set)
then 7 is subtracted. Looking 7 past the "9" digit in the table of
ASCII characters you find the letter"A". Then in either case the
value of the digit "0" is subtracted. In other words, if register BX
were pointing to an "8", then this would be replaced with the
binary value of 8. If, however, BX points to the letter "C", it will
be replaced with the value 12. So this is just converting a
hexadecimal digit or digits from ASCII to binary. Well of course!
We "know" this program asks for hexadecimal values and has to
interpret them because in this case we are looking at a DEBUG.

Because the processor executes instructions in a certain order,
we must examine them in that order. This might seem obvious
(and in the above example it is) but in many cases it is not easy to
determine the way in which instructions are executed. Consider
the following code.

1234:E83033 CALL L4567H
1237:0130 ADD [BX+SI],SI
1239:337200 XOR SI,[BP+SI]+O

The ADD instruction following the CALL is not actually
executed at all. By looking at the routine at address 4567 we find
that the byte following the initial CALL is just a parameter. This
byte gets used and the return will be to the following address
(1238). We would not have been able to tell this if we hadn't
looked at the instructions in the same order the processor does.
The code should actually appear as follows.

1234:E83033 CALL L4567H
1237:01 DB 1
1238:3033 XOR [BX+DI],DH
1239:7200 JB L123BH

When you pick apart even a small section of code you should
enter a few comments and add a label name if you can. Then you
won't have to reinvent the wheel the next time you look at this
code (and you will look at it more than once!).

This process is going to be very laborious. It takes many in
structions in assembly language to accomplish seemingly trivial
functions. Like the simple BASIC statement "LET
A(l ,2) =B+ C"'2" may take thousands of instructions and in
volve many subroutines. But all is not lost. Because you know
how the program executes (at least in a gross sense), you will be
able to tackle small portions of it at a time.

Any information you can get your hands on will help. User
manuals, especially reference manuals, are a valuable source of
information. Some go so far as to include memory maps and
descriptions of internal data types. Take TURBO Pascal for
example, the manual is a real gold mine!

A bottoms up approach has proven to be the most useful when
disassembling a program. Start from the lowest level. Look for
the operating system interface. The reason is that these are well
defined and have a specific calling sequence. Some disassemblers
recognize the MS-DOS system calls and use more meaningful
representations. For example the instructions

7F01H,7F09H,7FOFH;
7F1JH,7F4FH,8010H;

12J4:017F097FOF7F L12J4H DW
12JA:1J7F4F7Fl080 DW

The Computer Journal/Issue #35 13

Deciphering More Obscure Code
In the good old days when memory was expensive and

processors had a limited address range, assembly programmers
delighted in seeing how much they could squeeze into small
spaces. This tendency has lessened somewhat with the newer
processors and cheap memory, but you will still find some real
funny looking code.

Consider the following which was found at the start of a disk
input and output routine.

Wait a minute, you say. How can you have a set carry instruc
tion (STC) immediately followed by a jump on no carry (JNC)?
There must be something wrong. No one writes code like that!
Actually this code is correct. Since the jump on no carry is never
executed, the destination byte is always skipped if the instructions
are executed in the order shown. However, the programmer
sometimes jumps directly to address 1236 which is in the middle
of the jump instruction. In this case, the displacement is executed
and this becomes a clear carry instruction (the F8 byte). What
happens is that the routine has two functions that are very similar
(like keyboard input with and without echo) and the state of the
carry flag is used to determine which function is desired. A jump
to address 1234 does one thing and a jump to 1236 does the other.
Very sneaky!

Or how about this piece of code.

plain. Segments may be defined in the wrong order or some exter
nal references are not defined at all.

Get yourself a good screen oriented editor. One with virtual
memory support is vital. Assembly programs tend to be very large
and it will be a real pain if you have to break it into small pieces
because your editor limits the code to 64k. You are going to
especially need global search and replace functions. WordStar,
although rather slow, does work fine for this type of work as long
as you don't use document mode.

The disassembler will probably insert too many data type poin
ter override instructions. These are the WORD PTR and BYTE
PTR sequences you see all over the place. Assemblers, like
MASM, do not require these overrides if the types already match.
That is, if a value is referenced as a 16-bit word and it has
previously been defined as this type, then an override is not
required. If the disassembler is not sure that these conditions have
been met, WORD PTR (or BYTE PTR) will be inserted. One of
the first things I like to do is to remove these phrases where they
are not needed. For me, they just clutter the code.

EXE type files pose the biggest challenge to the disassembler.
The assembler will certainly complain about some aspect of the
way the different segments are handled.

One of the difficulties disassemblers have is what to do about a
numeric reference. MD86 rather simplemindedly inserts a variable
reference for each occurrence unless the address is outside of the
code boundry? And is the reference really to an address or is it
just a constant? Answers to these questions are difficult and each
disassembler handles them differently. These issues must be dealt
with before you can assemble the program. Note that MASM is
very sticky about variables and constants. If a label is defined as a
constant (using EQU), then MASM issues the message
error 56: No immediate mode when this label is referenced as a
variable. This is telling you that the EQU instruction must be
changed to a DB or DW.

higher level becomes easier. Now you can find those routines that
read and write to file buffers without worrying about all those in
structions required to actually get the data out to the disk.

In this way the program gradually starts to unravel and before
you know it you will actually understand how the programmer
was able to write it.

Execute files (those with the extension EXE) introduce a whole
set of additional problems. Not the least of which is determining
actual physical address for instructions. You see, the Intel 8086
constructs the physical address at run time from a segment
register and an offset. The relationship is:

physical address ; segment*16 + offset

Because each register is 16 bits long, there is the possibility of
tremendous overlap. An offset of 100 into segment 1234 is the
same as offset 110 into segment 1233. To further complicate mat
ters, the segment registers can be changed at will. Thus when an
instruction is executed, the contents of the segment registers
(which may have been defined who knows where) are of vital im
portance. The more segment registers are modified within a
program, the tougher the job of disassembly is.

As an example of a typical execute program, let's look at
EXE2BIN.EXE. Within the first few instructions we see the code
shown in Figure II.

Let's look at this· code for a second. We see that almost the first
action of this is to call MS-DOS and find out what its version
number is. If this number is greater than or equal to 2 then this
jumps to offset ooiF. So the code between OOOC and oolE is only
executed if the version number is less than 2. Following the jump
instruction, the next two instructions initialize the data segment
register (DS) to 39 hex. That means that further references into
the data segment will get to physical address 390 hex + offset.
The next instruction loads the DX register with the value 15B hex.
Now if we take a quick look at address 4EB hex (390 + 15B = 4EB)
in our code we will find the start of the ASCII message "Incorrect
DOS version$". A quick note, normally these addresses (ie 4EB)
will be relative to the start of the data segment within the EXE
file, and the code segment follows this immediately. Thus we have
to look at 4EB - data..-segment_size within our code. But for
EXE2BIN.EXE, the data segment size was zero so we can look
directly at address 4EB. Now the two following instructions are
very curious. By executing the PUSH CS and POP DS we will ef
fectively reset the data segment register to the code segment
register, or zero within our file. Thus the call to MS-DOS fun
ction to display an ASCII character string will try to get the
characters from offset 15B instead of 4EB. This is a definite bug
in EXE2BIN.EXE! The PUSH and POP instructions should not
be there. Even the best programs can contain bugs. Don't be too
alarmed when you run into one.

Moving on, at addresses 22 and 25 we see that the extra segment
register (ES) is being set to 39 hex just like the data segment
register was set. This should give us a real strong indication that at
address 390 hex (or a few bytes beyond) we will find the start of a
data area within our code. This will help us later on.

One further note, when MS-DOS executes an EXE type
program, it initializes the data segment and extra segment
registers to point to an area called the Program Segment Prefix
(PSP). This area contains many useful items that the program will
need. So prior to changing these registers, the program will
examine this area for those items it needs. Figure III lists those
items that are of most interest to us. Refer to reference 1 for a
more complete discussion of this area.

Polishing the Source Code
Sooner or later you will come to the point where you must

abandon the disassembler. It has done its job but now an editor
would be better suited to working on the files.

Once you generate a source file you can try assembling it. There
will undoubtedly be many areas where the assembler will com-

1234:F9
1235:'73F8
1237:B80100
123A:7304
123B:7304

STC
JNC 1122FH
MOV AX,l
JNC L4567H
JC L7654H

14
The Computer Journal/ls"ue #35

1234:40
1235: 40
1236:40
1237:40
1238:40
1239:E82B33

INC
INC
INC
INC
INC
CALL

AX
AX
AX
AX
AX
L4567H

Regarding your work, you would certainly be allowed to sell
your label names and comments but probably not the instruc
tions. After all if you sold the instructions then you are, in effect,
selling the program and would owe the author royalties. But all is
not lost as there is a way out of this mess.

If you consider that every line of the assembly source file looks
like this:

It doesn't make sense to have that many increment instructions
in a row. Or does it? Actually this is part of an error handling
routine. The idea is to load the AX register with an error number
and call the routine at 4567 to print out a message based on the
error number. To display error number 1, then the programmer
writes the code

To display error message number 4, then the call goes to ad
dress 1235 instead. For this particular procedure, the AX register
always contains a zero (it is used as an error flag) and so the XOR
AX,AX instruction can be eliminated. Then this requires only a
three byte call instruction to flag an error condition (instead of
the usual five bytes). Some programmers go to great lengths to
save a few bytes of code!

When you discover this, you immdediately enter some ap-
propriate label names. The code now looks better.

1234:40 Error5 INC AX
1235:40 Error4 INC AX
1236:40 Error3 INC AX
1237:40 Error2 INC AX
1238:40 Error1 INC AX
1239:E82B33 NoError CALL L4567H

Making Use of the Generated Source Code

Now that you have generated the source code and it has been
documented more of less to your liking, what do you do with it?
Although you probably should have asked yourself this before
you started this project, here is a list of the major uses for the
source code to a program.

• Using the source code you can fix those "bugs" that preven
ted you from fully utilizing the product.

• Set those default parameters to what you want.
• Modify the program to include features that you (and

perhaps others) want to see.
• Learn how the programmer did those wonderful things.

Make your programs work just as well using these techniques.
• Make some money from your labor.

Because you have converted the program from machine code to
an ASCII file suitable for an assembler, you can now edit the file
making any changes you wish. Then you reassemble and link (or
load) the program. This new copy now functions the way you
want it to.

If one of your reasons for producing the source code was to
learn how the program functioned, then the printed listing is
probably the most important result. While the process of
disassembling already gave you great insight into the program as a
whole, now you will be able to study that particular aspect that in
trigued you.

Another interesting, but often overlooked, use for the source
code is that other people may have similar interests to yours.
Maybe you could sell it? This is a sticky area because the source
code is composed of instructions whose order (ie, the executable
part of the program) is owned by the author, and your added
comments and label names. There have been a few examples of
disassembled programs being published (for example the
Timex/Sinclair ROM) but these most likely required the consent
of the original author.

2345:31CO
2347:E8EEEE

XOR AX,AX
CALL 11238H

<-- #1 ---> <---------- #2 -------> <---------- #3 -------> <--- #4--->

{LebelName} {processor instruction} {instruction arguments} (Comments.}

where each field could be absent, then you could extract the por
tions that you have created (#1 and #4) from the line and eliminate
the portions that the program author created (#2 and #3). The ex
tracted portions could be put into data files and sold. Now in or
der for a customer to use this data (your label names and com
ments), he will have to come up with the instruction and argument
fields for each line. This means he must already have the
program. Since even a rudimentary disassembler has no trouble
producing the processor instructions for a program, you will have
to come up with a disassembler that knows how to combine your
label names and comments with the disassembled instructions.
This is not a trivial task, but it's not that difficult either. What
you come up with is a program that can reconstruct the source
code on the customer's computer system.

In this way you would only be distributing your label names
and comments along with a simplistic disassembler that knows
how to put the pieces back together again. And, importantly, the
author is not cheated out of any royalties that are due because the
user must already have a copy of the program. Which hopefully
was obtained properly.

The results of this fancy foot work is that the customer has to
wait a short while for the source code generator to produce the
final files. The generator for TURBO Pascal takes about twenty
minutes to produce 21,000 lines of assembly code. Not a big in
convenience considering the immensity of this task.

These knowledgable, highly specialized disassemblers are what
I call Source Code Generators. For various products the work has
already been done for you. c.c. Software has these available for
CP/M 2.2, CP/M 3, and TURBO Pascal v 3 (Z-80 and 8086).
And more are in the works.

References:

1) MS-DOS Developer's Guide", John Angermeyer and Kevin
Jaeger, Howard W. Sams &Co, 1986

2) Peter Norton's Assmebly Language Book for the IBM PC,
Peter Norton and John Socha, Prentice Hall Press, 1986

•

The Computer Journal/Issue #35 15

Real Computing
The National Semiconductor NS32032

by Richard Rodman

Figure 1: Examples of NS32 instructions.

ADDW LABi,LAB2 Add the value at LABi to the value at
LAB2 (note - no registers used!)

SAVE [R0,Ri,R5-R7]
Compare to MOVEM.L [A0,A1,D2-D5],(A7)-.
Which is clearer?

CMPB -6(FP),Ri Compare the byte 6 bytes below the frame
BLT LABi pointer, and branch to LABi if it is

less than R0.

Real Computing

Add double (32 bits) register R0 to Ri.R0,RiADDD

MULW TABi(R0),-12(FP)
A similar example - all addressing modes
can be used in most operands of most
instructions.

Next down the line are Multibus boards, produced by National
Semiconductor themselves and others. These boards tend to be
costly and not immediately useful, but with other Multibus boar
ds, you can build up a system.

CompuPro produced an 8-100 CPU board, the CPU-320l6. It
was not too successful (they had no software to run on it), but it's
a very well-designed board, using the full16-bit mode of the bus.
Last I heard, they still had some available which they were selling
off at $95 apiece, a bargain.

Of course, there are complete systems like the Sequent and
exotic VME bus boards you can buy, but these are really big
ticket items that cost mucho denaro.

For the more serious or budget-conscious, or both, there are
the Designer's Kits, available from your local Hamilton-Avnet.
These include a CPU, either a 32016 or a 32032, and a floating
point unit (FPU), memory management unit (MMU), interrupt
control unit (ICU), timing control unit (TCU), a ROM
monitor/debugger/editor/assembler, a decoding PAL, some
books and a schematic. The 32016 version is $60, and the 32032
version is $75. You'll need to wire-wrap a circuit, and you'll need
some sockets, static RAMs, and glue chips.

CPU's in the Series
Before I go on, let's get the various family members straight.

First, there's the 32032, the basic 32-bit CPU of the series. It's
available at 6,8 and 10 MHz. Then there is the 32016, which has a
l6-bit bus, and the 32008, which has an 8-bit bus.

Moving up, there is the 32332, which has an address bus expan
ded to 32 bits (the earlier versions only have a 24-bit address) and
can run up to 15 MHz, hitting roughly 2 MIPS. And there is the
brand-new 32532, which has an on-chip MMU and is capable of

Start off with a tricycle. It's nice, basic transportation, not too
fast, but predictable. But before you know it, users are com
plaining that it's too slow. So, you graft onto its rear a motorcycle
engine, transmission and rear wheel. Faster, but you un
derestimated the users' demands, so onto the right side, you graft
half an automobile with two wheels. Grotesque, right? This image
illustrates how both Intel and Motorola have grown their 32-bit
processors through evolution.

It's important to remember that computer history didn't begin
with microprocessors. The 8008 and the 6800 were drastically
downsized computers-on-a-chip, embodying a few design concep
ts of minicomputers of the day. Microprocessors then evolved
from these starting points into more complex designs along their
own growth paths. The 386 processor of today still has a strong
resemblance to the 8008.

Someone could have asked, instead of trying to redevelop the
computer along an independent line of development, why not try
to duplicate an existing, successful computer architecture, proven
in the field? Someone, in fact, did ask. National Semiconductor
developed its 32032 family of chips, not as a SC/MP with 32-bit
registers, but as an emulation of DEC's highly successful and
powerful VAX architecture.

With what result? With the result that, like the VAX, the
National Series 32000 processors have one instruction set for the
family-all the chips are completely object-code compatible.
There are no "gotchas" such as required word-alignment,
separate "address" and "data" registers, or addressing modes
that only work on certain registers or instructions. It's a clean in
struction set, a joy to use from a software standpoint. How often
do you have to look at an instruction reference manual? Intel
programmers take it to bed. Motorola programmers take it to
work. National programmers leave home without it.

Some examples of NS32 instructions are shown in Figure 1.
So, the National series maximizes the value of the program

mer's time. "But how can I get to use this great instruction set?"
you might ask. Alas! There are no ready-made glitter boxes
available from Toys-R-Us or K-mart sporting an NS32 processor.
Thus, the NS32 experimenter is forced to venture into the dark
mysteries of hardware construction.

Hardware Options for the Experimenter
The least painful way to get into NS32 computing is to obtain a

PC coprocessor board. This is a board with a CPU and a meg or
more of RAM which plugs into a Pc. The PC's Intel processor
controls the disk drives, screen and keyboard, becoming, in ef
fect, an I/O processor for the real CPU. Several of these are
available, most notably from Definicon Systems and Opus
Systems. They usually run Unix and sell for $1500 and up.

Another PC coprocessor effort, which was intended to sell for
less than $1000, was the PD32. This board was designed by Dave
Rand and George Scolaro and described in Micro Cornucopia
magazine. I don't believe it is available anymore, but you might
find one used.

16 The Computer Journal/Issue #35

about 10 MIPS. I cite MIPS figures hesitantly. Don't compare
MIPS figures with smoke-and-mirrors MIPS figures given for
RISC CPU's. To convert RISC MIPS to VAX MIPS, you have to
divide by 10 to 15 or more. To be fair, RISC CPUs have done us a
great service by greatly advancing the state of the art in contriving
benchmarks.

The NS32 CPU's are all object-compatible: PROMs burned for
one CPU will work on all the others.

Software Options for the Experimenter
If you get a PC coprocessor with Unix, you're all set for

whatever you have in mind. If you get anything else, though,
things don't look so peachy. The Designer's Kits come with a
Tiny Development System, which is a ROM monitor with
debugger and a tiny editor and assembler. It's not suitable for any
very complex work.

Between the two extremes is a yawning chasm that a loosely
associated group of intrepid young NS32 experimenters is seeking
to bridge. (Well, some are young, anyway.) Neil Koozer wrote the
Z32 assembler, which runs on a Z80 under CP1M or under MS
DOS using Z80MU; He has been working on 32HL (see Tel #30),
an integrated development environment for the NS32.

There are a couple of other assemblers available, plus Small-C
and a full C compiler. Work has been proceeding on a simple
CPIM-, MS-DOS-like operating system for the NS32. This OS
will be mostly written in C and will be distributed in source code
form.

Once we have a minimum system running, it will be freely
distributed. I'd like to make it a lot like VMS, but Marc Lewis
wants to make it Ilke AOS, and Brian Haug wants it to be like
Unix. It'll be great! We'll make it accomodate user-written com
mand processors, so that everyone can tailor it to his or her own
desires, but still be able to interchange programs and data. Please,
though, send me your changes so that they can be shared with
everyone.

5·100 EPROM Burner

The PC 360K diskette format has emerged as the world's
predominant data interchange medium. More computers can read
this format than all others combined. Therefore, nearly all ex
perimenter's operating systems use this format, such as Hawthor
ne Technology's K-OS-l for the 68000. The format is actually
very good for technical reasons, too, but I won't go into that
here.

Why This Column?
So, the purpose of this column is threefold: first, to expose

more people to the power of the NS32 architecture; second, to
support the growing number of NS32 experimenters out there,
both in hardware and in software; and third, to get more people
involved in the public domain operating system project.

Yes, we're giant-killers. But what we keep finding is that while
the giants certainly are slow, they're not all that big after all.

Where to write-where to call
CompuPro/Viasyn Corp.

26538 Danti Court
Hayward CA 94545-3999

Definicon Systems Inc.
1100 Business Center Circle
Newbury Park CA 91320

Opus Systems Inc.
20863 Stevens Creek, Building 400

Cupertino CA 95014

Richard Rodman
1923 Anderson Road

Falls Church VA 22043
BBS (Virginia-East Coast)

703-847-2951

•
Computer Corner

(Continued from page 18)

this. Talked to someone at Digital Resear
ch (very helpful), and he thinks that
request is just impossible. Ignored it and
everything seems fine.

That's it. Took a couple days, but one
day would be plenty for anyone who ac
tually has some idea of what he is doing.
The only trouble I can see with the board
has been a certain lack of consistency in
the connection it makes in the S-I00
backplane. At least, that appears to be the
cause of an inability to get correct voltage
measurements until I pushed the board
around a bit. Later, when watching the
LED during EPROM programming, the
same thing was apparent, but then if you
are seeing the LED light, everything is
fine. If I don't, I just "push the board
around a little." The board certainly ap
pears to be just fine, and I'm sure if there
is anything wrong it's from the rough
handling I gave it during construction and
during testing. You perform a resistance
test before starting to see if the board is
generally all right, and that was fine.

The board comes with a remote board
and an EPROM burning program written
in C that seems quite luxurious. I've
already "captured" the contents of my
printer ROM for later manipulation. That
remote board is quite the thing. You plug

The Computer Journal/Issue #35

in your S-I00 board to which you've at
tached a 4O-wire ribbon cable, hang the
cable through a convenient hole
somewhere, then install the remote card
(with its ZIF socket(s» anywhere that is
convenient for you.

Through use of configuration headers
(little 16-pin machined pin sockets with
templates on them), this system programs
any EPROM from a 2716 through the
27128, as long as it can be programmed
with either 21 or 25 volts. Noticed just in
time that the 2764s and 27128s that JDR
sells are 12-volt chips, so watch out.
Found 21-volters in other ads, so they're
not rare.

By the way, I recommend ZIF sockets (I
used TexTool) for both the programming
socket (a 28-pinner) and the configuration
socket. I've bent all the configuration
leads and even broken one taking the
headers out of the configuration socket.
I've seen something advertised for pulling
these things, so maybe that would be wise,
too. The ZIF programming socket is a
dream. Just get the EPROM somewhere
near the socket and it comes out and gets
it from you. Simplicity itself.

Digital Research is still in business, in
credibly enough. Get a "catalog" from
them at P.O. Box 381450, Duncanville
TX 75138 (214) 225-2309.•

(Continued from page 40)

anybody, as it gives examples of how to
talk to hardware. For me it will be in
teresting to talk to him next year and see
how his self publishing is doing. I have
been thinking of doing a similar project
myself, but more along the lines of Forth
code and Forth ENGINES.

Forth ENGINES, or CPUs that run
Forth directly, are actually very powerful
devices which many organizations have
not been considering for projects. I feel a
good tutorial type text, showing inter
faces, projects, and Forth code would be
of interest for many of our readers and
the industry. My biggest problem with the
project is keeping up with all the new
engines and vendors. Unless the market
crashes soon, there will be a lot of new
Forth based products hidden away in new
markets. With that I guess I should take
my cue and start writing.

NEXT
No, this is not a Forth concept, just my

way of ending this corner and hoping next
time to be back on my regular topics,
whatever that happens to be. To contact
Bruce and get his book, write "eisys",
1009 North 36th Street, Seattle, WA
98103.•

17

S-100 EPROM Burner
Building the Digital Research Board

by Michael Broschat

I'm one of those people who when he
felt he had to have a personal computer
back in 1983 listened to a "friend of a
friend" and ended up with an S-Ioo: a
Sierra Data Sciences SBC-loo with If,

drives and a Qume 102 terminal, to be
exact.No~, I realize the dealer must have
been ecstatiC to be getting rid of what wlls
increasingly appearing to be a white
elephant.

I suppose that since my only computing
experience had been some very mild word
processing on a university mainframe, I
could have done worse. Now don't you
hardware types get riled up. I know very
well that at that time the concept of the S
100 was "right" and that in some sense it
still is. But not for people like me, whose
only need for the personal computer was
to write very non-technical things. Boy,
have times changed. Five years later I am
burning EPROMs (after disassembling my
BIOS) and doing techniCal translations
from the Chinese.

But I've had so much to learn, I am way
behind everyone else. Just when I am get
ting comfortable with my equipment,
think I know something of how it works,
and am more than mildly addicted to ZC
PR, everyone else is bailing out. There
can't be more than about 12 of us left
doing 8-bit things, and most of them seem
to be back east.

Anyway, I've known for quite some
time that there are changes I want to make
in my system, but just haven't gained
enough skill to manage them. I bought a
Magnum Digital disk controller board a
couple years ago to gain 5" drive
capability, but have never been able to get
it to work on my existing system. A couple
years of various experiments have shown
that the new board is conflicting somehow
with the SBC (not because of shared por
ts), and the only way out seems to be to
keep the SBC from programming the
various Zilog chips (zillions of interrupts)
before booting the system. Could be
something else, of course, but haven't got
any further yet.

So, how to do that? I finished a
disassembly of my system BIOS (Sierra
Data only supplied code for a "user

18

BIOS"-console and printer I/O, etc.)
some months ago, and am reasonably sure
now how the boot PROM and system
BIOS are interacting to create my
problems. I commissioned an attempt to
reprogram the contents of the boot
PROM, but that failed, and I -think I
know why. Programming the EPROM
was not free (cost me about $20), and I
figured that before I get successful things
could get expensive, so looked again at the
Digital Research of Texas ads in various
hacker rags and took a chance on their
EPROM burner at about $40 for the bare
board.

I did an stereo amplifier kit once
(Dynaco), but that's been the limit of my
experience. I knew that with a bare board
I would be responsible not only for under
standing the instructions, but also for fin
ding the parts in the first place. Did the
best I could from the parts list and a JDR
Microdevices catalog. Made some
mistakes and succumbed to a couple
failings in the documentation, but all in all
it has turned out pretty well. I'll say some
more specific things later.

I think the reason I'm writing this is
because there must be others like me out
there, and if you don't act fast to take ad
vantage of deals such as this, they just
won't be around much longer. If you are
happy with your S-Ioo and want the
ability to reprogram EPROMs (for your
computer, your printer, your terminal,
who knows what else), look into this.
There are other things, too. From the
same company I bought 2 megabytes wor
th of RAM disk boards. What a dream
machine I'll have when I can afford the
DRAMs! And they also have various
RAM/EPROM boards, etc. If I can build
a "bare board" project, anyone can.

Some Construction Notes
The resistors don't come labeled. You

who know what you're doing knew this
already, but I didn't. Someone tipped me
off to a $0.60 chart from Radio Shack
that helps you figure out what value each
one is.

"Machined-pin" was unknown to the
JDR representative with whom I spoke,

but followed a hunch and ordered the
AUGATxx parts (we're talking sockets
here). That was correct.

The heatsinks I bought definitely
weren't intended for S-Ioo boards, but a
hacksaw straightened them right out. I
also used the hacksaw to modify the rib
bon header I had incorrectly ordered.
Works like a charm.

The parts list calls for a 6-position DIP
switch. You'll find that the board was
designed for an 8-position switch. The
bottom two switches have no effect
anyway, so get an 8-position one.

No one could help with the "3-pin 0.1
ctr jumper strip." Didn't know what to
do when I got this far. Then I noticed all
the resistor and diode leads I had trimmed
off up to that point. Perfect. Soldered
three of them into the correct places, and
there was my jumper strip.

The trim pots (potentiometers) I or
dered didn't fit the holes and couldn't be
made to. Visited a local electronics store
and found the right ones. There doesn't
seem to be a way to specify how the leads
are arranged. You need ones that are "in
line" rather than staggered.

A 74LS74 is missing from the parts list.
The instructions warn about observing

the polarity of the LED. Never could tell
this. The one on the main board works
fine, the one on the remote is quite dim.
Maybe that's the reason?

I still don't know where pin I is on all
this stuff. A clerk at the electronics store
mentioned something about the standard
IC pin placement scheme, but I just kept
everything "pointing" in the same direc
tion and it works.

Adjustments
I bought the cheapest "multitester"

Radio Shack offers, about $10. You must
adjust two pots for voltage, then another
one for an "active low pulse of 2 ms
duration." Found a friend with an
oscilloscope, who pushed the right but
tons and helped me to make that final ad
justment.

One adjustment that seems at fault is to
check for 5 volts at pin 28 during a certain
step of the set-up program. You never get

(Continued on page 17)

The Computer Journal/Issue #35

Advanced CP/M
ZSDOS and File Systems

by Bridger Mitchell

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He's
the author of the widely used DateStamper (an automatic, por
table file time stamping system for CP1M 2.2); Backgrounder
(for Kaypros); BackGrounder ii, a windowing task-switching
system for Z80 CP/M 2.2 systems; JetFind, a high-speed string
search utility; DosDisk, an MS-DOS disk emulator that lets
CP1M systems use pc disks without file copying; and most recen
tly Z3PLUS, the ZCPR version 3.4 system for CP/M Plus com
puters.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,
Santa Monica CA 90402, and via Z-Node #2, (213)-670-9465.

Dawn of a New DOS

Think of it as CP/M 4.0-an all-new, feature-packed, high
performance BDOS replacement for all Z80 computers running
CP1M 2.2, ZRDOS, or other compatible DOSs.

ZSDOS is its final name-the cooperative product of Hal
Bower, Cam Cotrill, and Carson Wilson that fuses their initially
separate efforts. The result is explosive: improved disk function
performance, file datestamping with no reduction in program
memory, files automatically accessible from other directories, and
elimination of some notorious CP1M bugs. Benefiting from Ten
Brugge's P2DOS and Carson's first forays into Z80DOS, the
finely-tuned final product is fully compatible with BackGrounder
ii, NZ-COM and ZCPR34. And the authors' thorough, extensive
testing means highest quality; we are unlikely to ever see a ZSDOS
2.2, or 1.9!

ZSDOS is, foremost, an up-to-date DOS. It fully supports the
established DateStamper standard, and comes with preassembled
relocatable clock routines from the Plu*Perfect Systems library to
read virtually all of the popular (and many obscure) clocks. And
it breaks new ground, adding BDOS functions to get and set file
datestamps as well as to get and set the system realtime clock. In
addition to Plu*Perfect's PUTDS, SDD, and DATSWEEP
utilities, it is shipped with some nifty new tools that display files
sorted by date and that automatically copy datestamps. Best of
all, perhaps, is that the "trim" version of ZSDOS includes
datestamping within the BDOS with no loss of TPA memory (ex
cept possibly for BIOS space to hold a clock routine)!

The "full-up" ZSDOS version adds internal path-searching to
the BDOS, enabling programs to do what until now only the ZC
PR command processor has been able to achieve when loading a
command-scan a path of directories to locate a needed file. To
do this, it places the datestamping code in a separate small,
relocatable module somewhere-in or above the user's BIOS, in
NZCOM's user buffer area, or in a resident system extension.

Both versions of ZSDOS provide English-language error
messages complete with the name of the associated file, if one.
Error reporting is configurable, so that a program can field any
error itself, if it chooses. Other significant features include

The Computer Journal/Issue #35

noticeably faster warmboots and disk resets on hard-disk
machines.

The development team has made upgrading an existing CP1M
or ZRDOS system a snap-menu-driven installation and con
figuration utilities do all the work. And the documentation is top
notch.

I'm enthusiastic! ZSDOS boosts CP1M 2.2 computing to a new
level of performance, increases reliability, and makes datestam
ping available to every Z80 computer. If you are a CP1M 2.2 or
ZRDOS user, you will benefit most by upgrading to ZSDOS
without delay. It's available from Plu*Perfect Systems.

BackGrounder ii Update
BackGrounder ii, as many readers of Jay Sage's column know,

is a task-switching operating system system extension of CP1M
2.2, ZSDOS, and ZRDOS. Simply put, it allows you to switch
back and forth between virtually any two applications programs,
literally in mid-sentence! One reviewer described it as windows for
CP1M, other users refer to it a super-Sidekick (it provides a
calculator, notepad, screendump and background printing).

As TCJ rolls off the press I expect to have BackGrounder ii up
dated to full compatibility with ZCPR version 3.4. This will
become the standard version, and currently licensed users can or
der an update from Plu*Perfect Systems.

File Systems

The main topic for this issue's Advanced CP/M column is file
systems. Operating systems separate the organization and main
tenance of a file system from the storage and retrieval of data on
physical media. Files are most often stored on magnetic disks, and
the portion of the CP1M operating system responsible for the file
system is indeed called the basic disk operating system (BDOS).

In contrast, the lower-level tasks of actually writing data to,
and reading them from, the physical disk is delegated to a disk
driver, code that is part of the BIOS-the basic input/output
system that must know the particulars of the specific hardware of
the host computer.

The separation of file system functions and hardware-specific
functions is fundamental to the design of any major operating
system, and it has far-reaching implications.

First, it makes it possible to use the same programs on different
computers, with different physical disk drives, provided that they
run the same operating system.

Second, by keeping the logical organization of a "disk" and its
physical realization in separate layers of the operating system, we
can use a wide variety of storage media with the same file system.
A ram "disk", after all, doesn't spin at 300 rpm, and a cassette
tape or local area network is hardly a conventional disk, either.
Yet, to a program and the BDOS, a file is a file is a file.

Third, with some extensions of the operating system, it is
possible to mount a different file system on the same computer.
For example, some FORTH operating systems run on top of

19

CP/M and provide access to both FORTH file screens and CP/M
files. In a different way, DosDisk provides direct, transparent
program access to MSDOS files in a CP1M environment.

Format Proliferation

The earliest CP1M computers had only a single format, the
single-sided single-density 8" IBM "standard", and no provision
for anything else. Then, as a few higher-performance and higher
capacity formats were introduced, they were hard-coded into the
BIOS. Each new format required re-coding and reassembly of a
new system.

Today, CP/M suffers from a surfeit of physical floppy disk
formats. It seems that every manufacturer felt impelled to put his
own label on yet another non-compatible format, to the point
where we have well over 100 different ways of storing the same
file on one 5 V4" disk! This has also created something of an iden
tity crisis, because it is not always possible to unambiguously
determine a disk's format by magnetically reading the data on it.

The most modern BIOSes rise above this morass with flexibility'
and a degree of intelligence. They are able to identify a set of
"native" formats, and automatically adapt themselves to the disk
in each drive. In addition, they allow an external utility to set a
drive to a "foreign" format, one that the BIOS cannot identify
from its built-in data, but is known to the utility.

One such BIOS is the Advent TurboRom, written by Plu*Per
fect Systems for the family of Kaypro computers. It automatically
identifies 11 formats (Kaypro, Advent, Osborne, Ampro, Xerox,
etc.). A companion program, MULTICPY (sold separately),
allow TurboRom-equipped Kaypros to format disks in foreign
formats, and to make exact copies of entire disks in those for
mats. And the TURBOSET utility allow the user to specify some
90 foreign formats, making nearly every 5 V4" MFM-coded soft
sector format disk directly usable on a Kaypro computer.

MULTICPY and TURBOSET use a database (in dBase II for
mat) of physical and logical disk formats. Because the database is
extensible, new formats can be added. At Plu*Perfect Systems we
use MULTICPY to produce distribution disks in many popular
formats. If you have an unusual one, and can supply the physical
and logical disk parameters and a sample disk, we can probably
add it.

If your BIOS isn't this up-to-date, it is possible to temporarily
replace its disk driver functions with a special application
program long enough to copy files to or from a foreign format
disk. Such a program must be written for your specific com
puter's hardware. Two popular utilities of this sort are UniForm
(MicroSolutions) and Media Master (Intersecting Concepts).

You will find a cross-format tool is essential if you need to ex
change data on a format not supported by your computer. The
TURBOSET approach is the most flexible. It lets you use the
foreign format disk with any regular CP1M program, just like
your native-format disks. With the other tools you load the for
mat-conversion utility, copy the needed file(s) to or from your
native-format disk, remove the utility, and then run your regular
programs.

There are a host of challenges that confront the programmer
who seeks to upgrade his or her BIOS to this modern level of per
formance, and perhaps we can explore them in another column.
In the remainder of this issue, however, we will have our hands
full covering the file system and its implementation in the CP1M
BDOS.

File Structure
Every file structure has two key properties-a method of

naming files, and a method of allocating space for storing data.
Each file has a unique name within the filename space on the

disk. (In CP1M, the filename space is a user number; in MSDOS
and UNIX it is a subdirectory). With the name are usually a set of
file attributes that may control permissions on access to the file,
and perhaps datestamps as well.

20

Storage of data for the file is allocated in blocks-chunks of
128 or more bytes of data. With each filename the file system
associates an ordered list of blocks, and a total length of the file.

The file system must maintain this information in an orderly
fashion for each file on the disk. To do so, it uses a directory of
filenames, a/ree list of unused data blocks, and an allocated list
of blocks in use by the files.

The directory contains (at least) one entry for each filename.
The entry will usually include permissions or attributes that con
trol access to the file itself, and perhaps the datestamps for the
file. And it will include some type of link to the file's data blocks.

The free list is some type of data structure that indicates which
data blocks on the disk are not in use and can be allocated for
writing data. On a fresh disk it will include all blocks of the disk
not reserved for the directory, the boot code, or other operating
system purposes. As a file is written, blocks are transferred from
the free list to the allocated list and assigned to the file.

The Allocated List
I haven't said anything yet about how the directory and

allocated list are actually stored. Those are key choices made by
the designer of the operating system, and it's instructive to see
how they can differ.

In MSDOS, the list of' blocks is encoded in a file allocation
table (FAT). The FAT has an entry for each data block (called a
cluster in MSDOS) on the disk. An entry indicates that the block
is unallocated (and is thus part of the free list), is allocated to a
file, or is otherwise reserved.

The FAT is encoded in a way that allows it to serve two fun
ctions-it records the allocated and free blocks, and it shows
which blocks are associated with which files. Blocks that are
allocated to one file form a linked list. Each entry in the FAT is a
pointer to the next block in that file's list, and the last entry is a
special end-of-list mark.

The MSDOS directory entry includes only a pointer to the first
block of the file. The rest of the blocks are obtained by following
the linked list in the FAT. The FAT itself is stored on the disk,
and the MSDOS system keeps a copy of it in working system
memory. Thus, there are two separate data structures on an
MSDOS disk-the FAT (which is actually stored in duplicate) and
the directory.

CP1M takes a different approach-it includes the storage in
formation as well as the filename information in the directory en
try. Each directory entry contains a set of data block numbers and
there is no file allocation table. To obtain the data blocks for a
CP1M file, the system finds the first directory entry and reads off
the block numbers.

Where is CP/M's free list? It is implicit in the directory. When
a disk is logged in, the CP1M BDOS reads through the directory
of a disk and keeps track of each data block that is allocated to a
file. It encodes this information in an allocation bitmap for the
disk, setting one bit for each block that is in use. The bits that are
not set then represent the free blocks.

The UNIX system uses aspects of each approach. Each UNIX
directory entry includes the filename and an i-node number' this
is much like MS-DOS. An i-node is a list of the first 10 (5l2-byte)
data blocks of a file, plus links to indirect lists of additional
blocks. Directly including the list of the first 10 blocks in the i
node (a bit like including the block numbers in the first CP1M
directory entry) allows UNIX to rapidly retrieve smaller files and
yet use linked lists to extend files to very large sizes.

How Much Space Left?
One perennial disaster with many early CP1M programs,

famous and obscure alike, was writing a file to an almost-full
disk, running out of space during the operation, and having the
program quit with the precious data lost forever. Of course, a
well-written program wouldn't quit when a BDOS error occurs; it
would clean up its incomplete file, allow the user to change disks,

The Computer Journal/Issue #35

reset the disk system, and re-write the file.
But a really well-crafted program wouldn't even attempt to

write to the almost-full disk. Instead, before writing, it would
determine whether there is enough space left on the disk to hold
the file.

To do this, the program must obtain the total number of free
blocks. This is a natural function for the disk operating system to
perform, and in CP/M Plus there is a system call for this purpose
(46). But it wouldn't fit into the space on the system tracks of the
original 8" CP/M 2.2 systems, and so the BDOS includes another
system call (27) to return the address of the drive's bitmap, and
programs must count up the free blocks themselves.

Figure I show the Z80 routine, get_freek, that returns the
number of unallocated kilobytes of space on the currently logged
drive. It is portable-it works under CP/M 2.2, CP/M Plus and
even for an MS-DOS disk when running DosDisk. The code in
cludes contributions from Jay Sage, Joe Wright, and others, and
is used, in a slightly varied form, in the SP (space) command in
Z3PLUS and NZ-COM.

The routine first determines which version of CP/M is running.
If the system is CP/M Plus, the BDOS will do all of the work. In
fact, it's necessary to let it do the work, because in most CP/M
Plus systems the allocation bitmap will be stored in a different
memory bank and therefore not readily accessible to the program.
(If the routine did attempt to use the bitmap address, it would add
up bits of whatever program or data happen to be in that part of
the main memory, resulting in an incorrect value).

CP/M Plus function 46 returns the space remaining on the disk
as a 24-bit number in the first three bytes of the dma, in units of
128-byte records. So, to use this function, get_freek first sets the
dma address to the temporary buffer at 80h and calls function 46.
The divide-by-8 code then converts this to kilobyte units.

If the routine is running under CP/M 2.2, it first calls function
31 to get several disk parameters for the logged-in drive-the
block-shift factor, the extent mask, and the maximum number of
blocks on the drive. Next, it calls function 27 to get the address of
the bitmap (allocation vector). The code at label "cntfree" then
counts the number of unset bits in the bitmap, accumulating the
count in register DE.

Since each block represents some multiple of IK (1024 = 2** 10
bytes), the code at label "free2k" multiplies the free block count
by the size of one data block. The block shift factor is the base-2
logarithm of the number of 128-byte records per data block. In
other words, it is the exponent in this equation:

block size in records = 2 ** block-shift-factor

If the block size is IK (8 records), the block shift factor is 3
(i.e., 8 = 2**3), and the number of free blocks is already in IK
units. Otherwise, we multiply by the number of K in one block;
this calculation is simply a 16-bit left shift that results from
doubling HL (blkshf-3) times.

A Closer Look at the CP1M File Structure
One CP/M directory entry contains the following components:

user number-a logical partition of the volume (disk)
filename
file attributes
directory entry number
size of (the portion of) file indexed by this entry
the data block numbers for this entry

A single directory entry can hold either 16 8-bit data block
numbers, or 8 16-bit directory numbers. A CP/M data block can
be IK, 2K, 4K, or 16K bytes (the blocking factor is part of the
disk format specification), and the large blocks require 16-bit
numbers. So a single directory entry may refer to a maximum of
from 16*IK to 8*16K = l28K bytes of data, depending on the
blocking factor for the disk.

The Computer Journal/Issue #35

Clearly, a file might be larger than the number of bytes that can
be recorded in a single directory entry. To handle this case, CP1M
creates additional directory entries to hold additional data block
numbers. These entries have the same filename, user number and
attributes as the initial entry, but they have unique directory entry
numbers. (Contrast this with MS-DOS, which has just one direc
tory entry, but a longer linked list of FAT clusters for a large file.)

Reading a file.
The actual numbering of CP/M directory entries is somewhat

tortuous, and so we will discuss it later. First, let's get a grip on
the details. Assume we already have a large file and consider first
what the operating system does when an application program is
reading the file.

First, the program calls the BDOS to open the file named in the
indicated file control block (fcb). The CP/M BDOS searches for
the initial directory entry, finds it, and stores the entry data, in
cluding the data block numbers, in the user's fcb.

Next, the program repeatedly calls the BDOS to read the file
sequentially from the beginning. The (CP/M 2.2) BDOS gets the
first data block number from the feb, converts that value to track
and sector numbers, and calls the BIOS to read one 128-byte
record. Next, it increments the sector number (adjusting for
reaching the end of a track) and calls the BIOS again, repeating
for the number of records in a data block (8 in a IK block, etc.). It
then gets the second data block number from the fcb, converts to
track/sector, and reads another set of records.

Eventually (after processing 8 or 16 blocks) all of the first direc
tory entry's data blocks have been used, and the BDOS must sear
ch for and read in the next directory entry. (At this point, on a
physical disk the movement of the disk heads back to the direc
tory track can often be heard; this extra motion significantly
slows down access to large CP/M files.) The BDOS then repeats
the process of computing track/sector numbers and calling the
BIOS to read records.

Writing a File.
Writing a file involves reversing these steps, with a few key ad

ditions, because disk space must be allocated. Let's assume our
program is writing a new file.

First, the program calls the BDOS to create the file with the
name stored in the fcb. The BDOS searches the directory for an
empty (unused) directory entry. It then writes the new filename
into that entry, with zeros for block numbers.

Now consider what the BDOS must do as the program sequen
tially writes the file. First, the BDOS must find a free data block
on the disk. To do this it consults its free list for the disk (the
allocation bit map) and assigns one block to the new file. It marks
that block as used and puts the block number into the file control
block. Now that the block number known, the next steps are
much like reading-the BDOS translates from block number to
track/sector numbers and calls the BIOS to write 128-byte recor
ds, until a block is full. Then, when a new block is needed, the
BDOS gets the next free block from the free list, and repeats the
process.

Eventually, the file control block is filled up with 8 or 16 data
block numbers, and the BDOS must make a second directory en
try. But before doing so, it "closes" the initial entry by writing
the file control block values to that directory entry on the disk.
Then, it searches for another empty entry, creates the second
directory entry for the file (with the same name, but a different
entry number), and finally resumes the process of allocating a
data block and writing records.

At last, when the entire file has been written, the program calls
the BDOS to close the file. Just as it did for the "internal" close
of the initial directory entry, the BDOS writes the data block
numbers in the file control block to the final directory entry on
disk.

21

I\)
I\)

Enter:
Exit:

get_freek:
ld
ld
ld
call

Figure 1. Free Space on a Disk

drive (0=A:, ... , 15=P:)
free space on drive, in Kilobytes

call bdos
inc hI ; point to block shift-factor byte
inc hl
ld a, (hI) ; Get value and
ld (b'lkshf) ,a ; .. save it
inc hI ; point to max data block number
inc hI
ld a,(hl)
ld (extmsk),a ; save it
inc hl
Id e, (hl) ; Get (word) value into DE
inc hl
Id d, (hl)
inc de ; Add 1 for max number of blocks

Compute amount of free space left on disk
BDOS select disk function

save drive

a
hI

5
0080h

(spacedrv) ,a
e,a
c,14
bdos

equ
equ

bdos
tbuff

check for CP/M Plus

Id c,12 ; get bdos version
call bdos ; if not cp/m] system
cp]0h
Jr c,dparams ; .. Jump to calculate from alv

dfree: ld c,27 ; BDOS get allocation vector function
push de ; Save BLKMAX value
call bdos ; Get allocation vector into
ld b,h ; .. BC
ld c,l
pop hl ; Restore BLKMAX value to HL
Id de,0 ; Inititialize count of free blocks

Shift everything right into HL (64 MB max reportable)

calculate free space for CP/M Plus

Id de, tbuff ; set default dma
Id c,26
call bdos
ld c,46 ; get disk freespace
ld a,(spacedrv)
Id e,a ; .. on this drive
call bdos

Disk space is returned by CPM+ at dma for] bytes.

ld hI, (tbuff) ; Low to L, Mid to H
ld a, (tbuff+2) ; High to A
Id b,] ; Divide by 8 (SHR])

At this point we have
BC = allocation vector address
DE = free block count
HL = number of data blocks on disk

Id c,a ; Save remaining allocation bits in C
dec hI ; Count down number of blocks on disk
ld a,l ; if down to zero
or h
Jr z,cnt4 ; .. branch
ld a,c ; Get back current allocation bit pattern
dJnz cnt2 ; Loop through 8 bits
pop bc ; Get ptr to allocation vector
inc bc ; Point to next allocation byte
Jr cntfree ; Process next allocation byte

pop bc ; clear stack
ex de,hl ; Free block count to HL

Rotate allocated block bit into carry flag
If set (bit=1), block is allocated
If not set, block is not allocated, so
.• increment free block count

Save allocation map ptr
Get bit pattern of allocation byte
Set to process 8 blocks

bc
a, (bc)
b,8

c,cnt]
de

rIa
Jr
inc

cnt4:

cntfree:
push
ld
ld

cnt2:

cnt]:

hl = space free in Kbytes

Clear carry
High
Mid
Low

BDOS get disk parameters function

For CP/M 2 use this method:

div: or a
rra
rr h
rr 1
dJnz div
ret

dparams:
ld c,]1

III
III
C
11l
'#
c..:>
(J1

--l
::r
11l

oo
3

"t:l
C

~
C
o
c....
::3
~

-l ld a, (blkshf) ; Get block shift factor=r
(l)

sub 3 ; Convert to log2 of K per block()
0 ret z ; Done if 1K per block
3
"0
C ; Convert for data blocks of more than 1K each
~
<-. free2k: add hl,hl0
!:; dec a
:::J jr nz,free2k!!!.- ret ; HL = amount of free space on disk in K
en ;
lJl
C spacedrv:ds 1
(l)

'*" blkshf: ds 1
w extmsk: ds 1c.n

clear high bits

point to random record #

high bits to A
low 16 bits in HL

get it

save fcb ptr
call bdos for filesize

+ 80h = size of each prior log. extent
h = 0

hI = rec. cnt. of last log. extent

· . is full
· . call bdos

or if overflow into S2
(not directory entry #0)
· .call bdos
or if Record Count

ld a, (hI)
and 7fh
jr nz,g_rd
inc hI
ld a,(hl)
cp 80h
jr z,g_rd

calculate filesize from fcb data

ld l,a
inc b
ld de,80h
ld h,d
jr g-9j

g_lp: add hl,de
g_dj: djnz g_lp

xor a
ret

call bdos to calculate filesize

g_rd: push de
ld c;35
call bd'os
pop de
ld hl,33
add hl,de
ld e, (hI)
inc hI
ld d, (hI)
inc hI
ld a,(hl)
ex de,hl
ret

;-------------

data blocks

Figure 2 . A CP/M Directory Entry

Figure 3. Calculate a Single Filesize

+ user number +----EXtent byte
/ / +---Sl byte

/ / / +--S2 byte
/ filename type / / / + record count

/ --------------- ----- / / / /
u f i len a met y p x 1 2 r00

10

Enter: de -> fcb (36 bytes), freshly opened or
copied from search-first buffer

extmsk contains extent mask for file's drive

Exit: a,hl = 24-bit file size value in 128-byte records

N
Co)

get_files ize:
ld
add
ld
cpl
and
jr
ld
inc
inc

hl,12
hl,de
a, (extmsk)

(hI)
nz,g_rd
b, (hI)
hI
hI

point to EXtent byte

if not directory entry #0

.. call bdos
save logical extent #
point to S2

Plu*Perfect Systems == World-Class Software

BackGrounder ii $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator.
notepad, screendump, directory in background. CP/M 2.2 only. Upgrade licensed
version for $20.

Z-System ~ $69.95

Auto-install l-System (lCPR v 3.4). Dynamically change memory use.
Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

JetLDR $20

l-System segment loader for ZRL and absolute files. (included with Z3PLUS and
Nl-COM)

ZSDOS $75, for ZRDOS users just $60

Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.
Enhanced time and date utilities. CP/M 2.2 only.

DosDisk $30 - $45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro
wlTurboRom, Kaypro w/KayPLUS. MD3, MD11, Xerox 820-1 w/Plus 2, ON!, C128
w/1571 -- $30. SB180 w/XBIOS -- $35. Kit -- $45. Kit requires assembly language
expertise and BIOS source code.

MULTICPY $45

Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats.
Includes DosDisk. Requires Kaypro wlTurboRom.

JetFind $50

Fastest possible text search, even in LBR, squeezed, crunched files. Also output
to file or printer. Regular expressions.

To order: Specify product. operating
system, computer. 5 1/4" disk format.
Enclose check, adding $3 shipping ($5
foreign) + 6.5% tax in CA. Enclose invoice
if upgrading BGii or lRDOS.

Plu*Perfect Systems
410 23rd St.

Santa Monica, CA 90402

24

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, JetLDR ©, JetFind © Copyright 1986-88
by Bridger Mitchell.

The Computer Journal/Issue #35

If an error occurs during the process of writing the file, you
may see some residue of the incomplete process. Quickie Quiz:
Explain how each of the following might result:

1. Filename in directory, file is shown as OK.
(Editor: That is zero K, not Okay.)

2. Filename in directory, file is shown as 16K (or 32K or ...),
but the end of the file is missing.

Internals of the Directory Entry.

Now we turn to the nitty-grity, and it is unavoidably confusing!
It's also essential if you intend to really understand CP1M files.

The CP1M directory structure is like a tree house that grew as
the kids got bigger. First it was a simple platform (for CP1M 1.4
files). Rooms got rebuilt to handle larger files and larger disks,
and the file control block got extended to provide random access
(CP1M 2.2). And small passageways were crammed with filesize,
datestamps, and passwords (CP1M 3).

Some of the confusion is simply terminological. One directory
entry is 32 bytes of data. Sometimes it is also called a physical
directory extent-"physical" because it refers to actual bytes on
the disk. Whenever you see this topic discussed, read carefully-I
suggest you' translate all references from "physical extents" to
"directory entries", and reserve the term "extents" exclusively
for "logical extents," which we will examine soon.

The directory entry has several fields, shown in Figure 2. The
information is densly packed. You can look at an actual sector,
which contains 4 directory entries, with the DU (or DU3) utility,
or by running the following bit of code under a debugger and then
displaying the default buffer at 0080h.

ld c,ll
ld de,5C
ld a,3F
ld (de),a
call 5
rst 38

Byte 0 of a directory entry (labeled "u") is the file's user num
ber. A value of E5 hex indicates that the entry is unused. Other
wise, it can have a value of 0 to 31 in CP/M 2.2. In CP/M Plus
user numbers are restricted to 0 to 15, and higher numbers in
dicate special datestamp, password, and volume label entries.

Bytes 1-8 are the filename and bytes 9-11 the filetype. They
must be uppercase, 7-bit letters, numbers, or a few other symbols.
Each of the 11 high (eighth) bits of the filename and filetype are
file attributes. Attributes 5-11 are reserved for the system to
designate files are read-only, archived, and so forth.

The next four bytes encode the entry number and the length of
the file. They will get our full attention in a moment.

Bytes 16-31 (lOh-lFh) are where the data block numbers are
stored. These are either 16 I-byte values, or 8 2-byte values,
depending on the disk format. If there are no more than 255 (FF
hex) block numbers on a disk (for example, on a single-sided
single density disk), it's possible to use I-byte values. Otherwise,
2-byte values are needed.

The Directory Entry Number
Now, had the tree house been built in one day, the directory

number would be a 16-bit word. Instead, we have to climb
through some tangled vines. So, hold on!

The CP1M file system has two fundamental units of
measurement:

1 record = 128 bytes
1 logical extent = 128 records = 16K bytes

Records and logical extents are numbered sequentially, beginning
withO.

Now consider a 17K file, with copies on several types of disks.

The Computer Journal/Issue #35

Things might look like this~

On Disk #1, 16K of data blocks fill up one directory entry.
Then one entry corresponds to one logical extent. The 17K file
will have 2 logical extents, and 2 directory entries.

On Disk #2, 32K of data blocks fill up one directory entry.
(How might this occur? Suppose a block is 4K, and block num
bers are 2-byte values. 8*4K = 32K.) Now, one entry can hold
two logical extents. The 17K file will have 2 logical extents, but
only one directory entry.

CP1M keeps track of logical extents with the EXtent byte,
which can hold 0 to 31 (0 to IF hex). After 31, it must again be O.

Why, you may well ask, does CP1M not allow more than 32 ex
tent values in this field? Well, the tree house architect wasn't that
farsighted. In the directory search functions, the BDOS uses a'?'
character to indicate a "wild-card" search. When a '?' appears in
the EXtent byte of an fcb, the BDOS will match any extent num
ber. And since the '?' byte is 3F hex = 001 11 II I binary, only 5
bits are available to number logical extents!

If five bits were indeed all that is available, CP1M files would
be .restricted to a maximum size of 32*block size. To allow larger
files, the tree house added the S2 byte. It holds the "overflow"
from the EXtent byte. Each unit of S2 thus represents 32 logical
extents, and the the S2 byte can take a value from 0 to 3F hex.

The full logical extent number is, therefore obtained by com
bining the EXtent byte and the S2 byte as follows:

lo~ext = (EXT & 1Fh) + ((82 & 3Fh) « 5)

(I use the C language operators: '&' is bitwise and, '< <' is shift
left).

Note well that the high-order bits must really be masked; while
the directory entry is active in the fcb, the BDOS uses the higher
bits of the EXTent and S2 bytes for internal BDOS flags.

Now, what is the directory entry number (the "physical ex
tent")? It is the logical extent number, divided by the number of
logical extents per directory entry. And that depends on the for
mat, information that is not in the directory, but in the BIOS's
data structure for the drive-the disk parameter block (dpb).

entry-uo = log_ext / extents_per_entry

The extent mask byte in the dpb encodes the number of logical
extents per directory entry. Its value is

extent-rnask = 2 ** extents_per_entry -1

A strange, but handy, representation, because it gives the num
ber of times to right-shift the lo~ext value to calculate the direc
tory entry number. And, simultaneously, it is a bitmask that, ap
plied to the EXTent byte, yields the number of logical extents
within the current directory entry that are in use.

entry-uo log_ext >> extent-rnask
((EXT & 1fh) » extrnask) + ((s2 & 1fh)

<< (5 -extrnask»)

Fast Filesize Computations.
How big is a file? What is its size in records, or equivalently,

what is the record number of the file? It is the record count in the
last directory entry (the number of records in the final logical ex
tent), plus the size, in records, of all prior extents. Since the RC
byte may be 80 hex, we must mask it. The formula is:

recno = lo~ext << 7 + (RC & 7Fh)

Before considering practical answers to that question, let's con
sider how large a record number can ever be. The record count is
7 bits, the EXtent byte is 5 bits, and the S2 byte can be 6 bits, a
total of 18 bits. The largest possible record number is therefore
2**18. Since there are 8 = 2*3 records in I kilobyte, the
maximum filesize is 2**15 K = 32 MB, a large file indeed!

25

This is the limit under CP1M Plus and ZSDOS. Regular CP1M
2.2, however, limited the record number to a 16-bit quantity (with
the largest S2 value being OF hex), and thus a maximum filesize of
4 MB. And I'm afraid most CP/M application programs expect
·that limit not to be exceeded.

We can determine a file's size in several ways. BDOS function
35 will return the filesize in the random record number field of the
feb. This is the easiest method; the BDOS does all of the tedious
arithmetic, and the random record number field is 3 bytes, so it
will hold a fulll8-bit record number, should we ever have a file so
huge. But it's slow, because the BDOS must search the directory
from the beginning each time it is called.

A second method is to have the program read the complete
directory, storing the directory entries for the file as it goes, and
then find the last one. This is no faster for a single file, but it is a
clear winner if the program is reading the complete directory
anyway (in order to display it, for example). In this case, the file
size calculation is made after the entries are stored and sorted by
entry number (as well as alphabetically, perhaps).

A Single File's Size
Often enough, a program needs a file's size as an adjunct to

other file operations. In this situation, the file can first be opened,
or searched-for, and then its size quickly computed from the'
directory entry data. Figure 3 shows the routine, get_filesize, to
perform this service.

If the file has only one directory entry, all of the information
needed to calculate its size in records is available in the EXtent,
S2, and RecordCount bytes returned in the feb by an open call, or
in the dma buffer by a search-first call. The routine first checks
that that the feb information is, indeed, for entry number O. It
then determines that there are no others by checking the record
count, because if it is 80h (128), the entry is full, and there may be
another one.

If all of these tests get passed, it calculates:

records = RecordCount + 128 * number
of prior logical extents

Otherwise, it calls the BDOS, which returns the number of
records in the random-record number field of the feb.

The get_filesize routine returns the filesize as a 3-byte value in
the A, H, and L registers. Except for very large files, A will be
zero, and the filesize can be used as the 16-bit value in the HL
register pair.

A List of File Sizes
What if you need to get the sizes of several files? If your routine

has a lot of memory available to hold a large list of directory en
tries you can process them in a single batch. But in some ap
plications memory must be conserved. The routine might be just a
small part of a large program that need memory for other fun
ctions. Or perhaps it is a component of a Z-System resident com
mand processor that wants to keep the TPA intact for the next
GO command.

The most basic directory routine looks like this:

set fcb to a wildcard mask
set dma to a buffer
search-first

if not found, quit
loop: if entry number is 0, display entry at offset in buffer

search-next
if found, loop

How can we add the fast filesize calculation to this routine?
Here's the sketch of the approach I used in the DIRectory com
mand built into BackGrounder ii, and also later in JetFind. That
command must be able to run when a regular program has been
suspended, without molesting that program's memory. This is the
special challenge.

26

We plan to modify the "loop" line to be:

if directory-entry is not full, calculate
filesize from entry.

else use BDOS function 35.

Hmmm. Initially, this looks like it would be OK. In fact, we're
in trouble as soon as it's necessary to use the BDOS filesize fun
ction, because that call will change the BDOS's internal directory
pointers and mess up the next search-next call. This requires some
discussion.

The BDOS search-firstlsearch-next functions are unlike any
other file functions, in that they are logically a single function that
is called repeatedly at two entry points. This operation says, in ef
fect: Find the first entry in the directory matching the supplied feb
and return it in the dma buffer. Thereafter, when entered at the
search-next point, continue the search for the next matching en
try.

The BDOS uses internal pointers to keep track of both the feb
and where it is in the directory search, and it presumes that there
will be no intervening file operations except more search-next
calls.

But, with some cleverness, we can get modify our routine fur
.ther to get around this complication. After making the BDOS 35
call, we do a search-first call for entry 0 of that file. This' resets the
internal pointers to the spot where the previous search had last
matched. Then, we search-next for the next entry.

The routine now looks like this:

set fcb to a wildcard mask
set dma to a buffer
search-first

if not found, quit
loop: If directory-entry is not full, calculate

filesize from entry.
Else

call BDOS function 35
set fcb to last-found entry
search-first

search-next
if found, loop

What's Next?
File systems are a big topic, we're out of space, and coding the

little directory routine must be left as "an exercise for the
reader. "

I appreciate your comments and welcome suggestions for
future columns. Topics I have in mind include stack and interrupt
management and environmentally-aware programming. What
else would you like to see? Drop me a line at Plu*Perfect! •

The Computer Journal/Issue #35

REL-Style Assembly Language for CP/M
and Z- System
Part 1: Choose Your Weapons

by Bruce Morgan

Copyright © 1988 by Bruce Morgen
All rights reserved

The virtues of assembly language
programming for limited-memory en
vironments like CP1M and its more
flexible descendants, like ZCPR3xlZ
System and BackGrounder II, are un
deniable. There is nearly unanimous
agreement among users that nothing
makes more efficient use of scarce RAM
and disk space-or runs faster-than the
tight machine code that only thoughtfully
crafted assembler can produce.

For the casual programmer/hobbyist
whose main exposure to computer
languages has been MBASIC or perhaps
Turbo-Pascal, coding entire projects in
assembly language tends to be an in
timidating prospect. Available instruction
books generally date from the early 1980s
and are usually based on the relatively
primitive assembly language tools bundled
with CP/M 2.2: the ASM assembler,
LOAD hex-to-comfile utility, and DDT
debugger. These programs work in their
limited ways, but demand a great deal of
the programmer and suffer significantly in
productivity comparisons with high level
languages. The results can be gratifying
(such well respected Public Domain con
tributors as Irv Hoff still work in what
amounts to ASM-style assembler), but the
programmer-hours involved often fill up
one's entire quota of free time in very
short order.

Through dropping ASM and company
in favor of more advanced tools and
techniques, assembly language can un
dergo a breathtaking transformation,
acquiring much of the assumed produc
tivity advantage of Pascal and "C" while
retaining its size and speed edge over all
high level languages. All that is needed
initially are a REL-capable assembler and
linker along with the free (although
copyrighted) subroutine library by
Richard Conn called SYSLIB-Z
System/BGii users will also want Conn's
VLIB and Z3LIB.

The Computer Journal/Issue #35

Choosing the Assembler and Linker
The first thing to consider in choosing

an advanced CP1M-compatible assembler
is whether to stick with ASM-style Intel
8080 mnemonics or to make the leap over
to the "official" Zilog presentation of the
Z80 instruction set. I much-prefer Zilog,
but if you've programmed with ASM or
MAC for a while, sticking with Intel
mnemonics is not all that sinful and can
make your learning curve a bit less steep.

The single essential characteristic
required of the assembler is the ability to
produce object files in Microsoft
relocatable (filename.REL) format. If you
run CP/M 3.x or, perhaps, MP/M 2.x,
you probably own such an assembler
already, Digital Research's RMAC. If
you've made the decision to stick with In
tel mnemonics for now, RMAC can be
your assembler for now. It's a proven,
reliable tool, though a bit short on
features and, like its sibling, MAC,
notoriously slow.

RMAC's companion linker, LINK, is
an exceptionally fine and robust tool.
Only the nearly $200 SLRNK + matches it
in output versatility (only these two can
produce the exotic-but-useful PRL and
SPR formats) and it handles segment
sequencing (not crucial for beginners, but
very valuable later on) flawlessly. Its only
major defect is its speed, so color LINK
slow-but-steady. We got a copy of LINK
with a used computer that has long since
bit the dust, but the tool has a secure place
in our hearts and on our hard disk. The
consistent correctness of its output make
it our standard by which other linkers are
evaluated.

Microsoft's classic M80 assembler is on
the next rung of assembler capability. In
its default 8080 mode, M80 performs like
an enhanced, somewhat more fault
tolerant RMAC, but it has another
capability that makes it near
indispensable to the serious assembler
jockey: it also understands Zilog
mnemonics, making it the only known
tool to handle both major dialects of
CP1M-compatible assembly language. It's
available cheaply (about $25-$40, bundled

Bruce Morgen is the founder and
"Director" (in that he directs himself and
occasionally attempts to direct his wife,
Julie) of the North American One-Eighty
Group (NAOG), a band of about 400
hardy Gomputing enthusiasts all over the
world who use HD64180-based computers
and/or Z-System compatible operating
systems.

A former Associate Editor of Elec
tronic Products magazine and "Advanced
User" columnist for User's Guide, Bruce
has been a freelance writer/editor and
programmer since 1985 but will consider
any and all alternatives involving great
wealth. He can usually be reached via
voice phone at 215-443-9031, hardcopy
mail at N.A.O.G., P.O. Box #2781,
Warminster, PA 18974, U.S.A., or by
modem at Lillipute Z-Node (312-649
1730) and Drexel Hill NorthStar (215-623
4040),300/1200/2400 bps, 24 hours.

with Microsoft's FORTRAN or
BASCOM packages, from surplus outlets
and at flea markets) and represents the
closest thing to a "de-facto standard"
assembler we have. Almost any assembly
language source file in the Public Domain
can be handled nicely by M80, with little
or no modification.

On the down side, M80 isn't much
faster than RMAC and its companion
linker, L80, isn't anywhere near as nice a
tool as it could (and should) have
been-use LINK, PROLINK or an SLR
linker (described below) instead.

The assembly language tools of SLR
Systems are the epitome of speedy,
modern assemblers and linkers. They
come in a number of "flavors": SLR
MAC replaces MAC, RMAC and the
8080 mode of M80 (with the Z80 exten
sions of Z80.LIB built-in), Z80ASM han
dles code written for M80's Zilog mode,
and SLR180 is essentially Z80ASM with
Hitachi HD64180 opcodes added.

All three are available in standard and
"virtual" versions, with th~ standard
editions being very economical (about
$50) and the pricier ($195) virtual tools

27

adding such Rolls-Royce features as
listing missed relative jump opportunities
and handling very large source and listing
files.
- The SLR linker also comes in two ver

sions. SLRNK is what L80 should have
been in the first place, while SLRNK +
isn't memory-bound and adds the key
feature of automatically putting code,
data and common segments in pre
designated order (more on that in Part III
of this series). Why should you choose
SLR over the older tools? That's a simple
answer: S-P-E-E-D. They are simply in
comparable in this respect, often com
pleting their work in less than a quarter of
the time required by the Digital Research
or Microsoft products. They deserve your
serious consideration if you place a high
value on your time.

Free Alternatives
There is no truly legitimate Public

Domain REL-capable assembler.
Cromemco's Zilog-convention ASMB
assembler (from its almost-CP/M CDOS
operating system) found its way into the
P.D. a few years back as "ZASM.LBR"
and may still be floating around in your
disk collection. If so, Cromemco repor
tedly says it's OK to use it, but the com
pany discourages further distribution.

ASMB/ZASM is a sound tool with a
number of advanced features and two
major deficits. First of all, it is very slow,
perhaps even slower than RMAC.
Second, it requires a "virgin" operating
system to avoid outright crashes-you
must not be running any memory resident
extensions (this even includes, regrettably,
BGii) for it to work. That aside,
ASMB/ZASM produces perfect REL
output and nicely formatted listings-it
even has the relative jump opportunity
listing feature that SLR owners must pay
$145 extra for! ASMBIZASM's com
mand line syntax pretty much mimics
ASM's.

Free linkers are another and happier
story. There are two good ones, PDLN
and PROLINK. PDLN (distributed as
PDLNlO.LBR) is the work of Wilson
Bent. It is rather slow and has a distinctly
"UNIXy" command syntax, but these are
not significant problems. It does segment
sequencing sensibly, but its CRT messages
are distinctly uninformative with regard to
segment addresses-again, not a big
problem and certainly nothing for begin
ners to worry over.

PROLINK (look for PROLINK.LBR),
from Ron Fowler's NightOwl Software is
a much more full-featured linker than
PDLN and is one beautifully designed
piece of software. PROLINK can fun
ction as a true, fully interactive linkage
editor and it has a built-in command file
capability and dozens of other features
that even SLRNK + can't match. It is also
very fast and its (mostly) English com
mand verbs make it very easy to learn and
use.

As a matter of fact, PROLINK would
be our linker of choice if it weren't for one
major deficiency: PROLINK is a one-pass
tool and cannot handle segment sequen
cing at all. Ron has informed us that all
the "hooks" for proper two-pass
operation are in place, but lack of demand
and NightOwl's current emphasis on the
IBM-PC version of his MEX com
munications program have precluded any
further PROLINK development. Even
with this serious flaw, PROLINK is a tool
that every aspiring or experienced assem
bly language user should have on hand. It
is a great program and we use it wherever
possible.

Debuggers
There's nothing to stop you from using

DDT or a similar non-symbolic debugger,
although something fully Z80-compatible
like C.B. Falconer's DDTZ is a better
choice for stepping through REL-style
assembly language programs. However, a

symbolic debugger (one that can refer to
label names rather than only absolute ad
dresses) is often preferable.

The two industry workhorses for this
job are Digital Research's SID (Symbolic
Instruction Debugger) and ZSID (Zilog
Symbolic Instruction Debugger). Both are
durable, proven tools, with ZSID
preferable because it can handle the entire
Z80 instruction set properly. SID is part
of the CP/M 3.x and MP/M 2.x
distributions, unfortunately ZSID is
not-and it's hard to find through surplus
and flea market channels.

Luckily, there are two serviceable alter
natives available in the Public Domain.
Z8E (look for Z8EI3.LBR) is the more
spectacular of the two, an "animated"
debugger released by author Rick Surwilo
in 1985 that must be installed for your
terminal if your CRT doesn't understand
ADM3A-style cursor addressing. Quite a
bit larger than DDT or ZSID, it is
nonetheless a favorite of skilled assembly
language programmers around the world.
Somewhat plainer and more ZSID-like,
Thomas Wagner's WADE (look for
WADE.LBR) was released in mid-1988
and is also quite competently written and
eminently usable.

By all accounts, the premier Z80 sym
bolic debugger is DSD, a $130 commercial
program that was available from Echelon
before that company's recent and unfor
tunate passing from the scene. My very
trustworthy friend Jay Sage swears by it,
but I'm not sure if it's still readily
available.

Onward
Now that you're appropriately armed

with an assembler, linker, and debugger,
get ready to break out your favorite
ASCII editor, because next time out we're
going to explain the essential source file
conventions and build a couple of REL
style programs together. •

If You Don't Contribute Anything....

....Then Don't Expect Anything

28

TCJ is User Supported

The Computer Journal/Issue #35

Jay Sage has been an avid ZCPR
proponent since version 1, and when
Echelon announced its plan to set up a
network of remote access computer
systems to support ZCPR3, Jay volun
teered immediately. He has been running
Z-Node #3 for nearly five years and can be
reached there electronically at 617-965
7259 (on PC-Pursuit) or in person at 617
965-3552 or 1435 Centre St., Newton, MA
02159.

Jay is best known for his ARUNZ alias
processor, the ZFILER file maintenance
shell, and the latest versions 3.3 and 3.4 of
ZCPR. He has also played an important
role in the architectural design of a num
ber ofprograms, including NZ-COM and
Z3PLUS, the new automatic, universal,

. dynamic versions ofZ-System.
In real life, Jay is a physicist at MIT,

where he tries to invent devices and cir
cuits that use analog computation to solve
problems in signal, image, and infor
mation processing.

My column about shells and Wor
dStar® Release 4 (WS4) in TCl issue #33
prompted more than the usual level of
commentary. There were extensive
discussions on Z-Node-Central and the
LiIIipute Z-Node (the official TCl bulletin
board), and several messages reached me
over the ARPA network. Not all of the
comments were favorable, but I was
nevertheless happy to receive them. They
helped further clarify my thinking on the
very important subject of shells and have
spurred me on to prove my points by ac
tually converting WS4 to a ZCPR2-style
shell! After a bit of follow-up discussion,
I will describe how this conversion was ac
complished.

Corrections
There were some things I said in the

previous column that were factually
wrong, and before I do anything else I
wish to correct them.

The Computer Journal/Issue #35

The ZCPR3 Corner
by Jay Sage

First, I stated that the Z-System code in
WS4 was written by someone other than
MicroPro. I was wrong. David McCord,
who was vice president at Echelon at the
time WS4 was developed, sent me a
message with the facts of this matter.
Echelon, through staff like David and
through published materials, educated
Peter Mireau of MicroPro on the facilities
and philosophy of Z-System. Peter did all
the actual programming, so the coding
mistakes were his fault, not Echelon's or
David's.

From a broader perspective, however,
as I stated in the previous column, the real
culprit was inadequate testing. Bugs in the
code would have been discovered and
conceptual issues clarified had more
people in the Z community been involved
as beta testers. There are so many dif
ferent styles of using Z-System that it
takes a number of testers to uncover
problems. Within days after copies of
WS4 were deliverecj to users of my Z
Node, I started getting questions about
strange behavior exhibited by WS4,
behavior that turned out to result from its
operation as a shell.

A second mistake in the earlier column
was my implication that WS4 does not get
its own name from the ZCPR3 external
file control block (XFCB). I no longer
remember what made me think that this
was the case, but David McCord assured
me (and I have now verified for myself)
that WS4 does, indeed, get its name from
the XFCB when it sets up the shell stack
entry.

Finally, one reader reported to me that
my WSSHLOFF routine (the one that
completely disables shells while WS4 is
running and reenables them when WS4
terminated) crashed his system. Unfor
tunately, a large number of misprints
crept into the listings in going from my
disk file to the printed pages. Most of the
typos were obvious, but one was com
pounded by a double error. In the
WSSHLOFF listing, the value for EXIT
SUB was printed as 03BYh. The 'Y' was
obviously a mistake, and clever readers
looked at the similar listing for

WSSHLFIX, where the value was given as
03B3h. This, regrettably, looks correct
but was also a typo. The proper value is
03BEh.

More WS4 Comments
While on the subject of WS4, I would

like to add a few further comments about
how it works. Not surprisingly (con
sidering when it was developed), in
creating its shell stack entry WS4 does not
make use of the facility introduced with
ZCPR version 3.3 that allows a program
to determine from the XFCB not only its
name but also the directory from which it
was actually loaded (the user number is at
offset 13 and the drive, with A = 1, at of
fset 14).

As a result, in order for WS4 to be rein
voked as a shell, the command search
path must include the directory in which
WS4 is located. I mention this here as a
reminder and suggestion to authors of
new or updated shells and error handlers
that they use this Z33 facility to avoid the
requirement that the program be on the
path and to speed up loading of the
program (by eliminating any search for
it). My WordStar conversion described
later adds this feature.

With WS4 it is generally necessary that
the command search path include WS4's
directory for an additional reason. I lear
ned the hard way that when WS4 runs un
der Z-System, it pays no attention to the
drive and user number that WSCHANGE
specified as the location for the overlay
files; it only uses the search path to try to
locate them.

This is a problem for me because, as I
have explained at length in previous
columns, I put only my small RAM disk
on the path and use ARUNZ aliases to in
voke all programs except the very few that
fit on the RAM disk. With this approach,
there is no way to get WS4 to find its
overlay files. The conversion addresses
this problem also.

ZCPR2 vs. ZCPR3 Shells

I would now like to take up again one
of the subjects raised in issue #33: ZC-

29

PR2-style versus ZCPR3-style shells.
First an aside. Shells seem to be a sur

prisingly emotional issue. I thought my
earlier column presented a fairly carefully
and calmly reasoned discussion of some
aspects of shells, including their pros and
their cons. Some readers, however, took
great offense at my even questioning the
current method of implementing shells or
of what some people are trying to do with
them.

One reader went so far as to suggest
that I had no business commenting on the
subject when, by my own admission, there
are a number of shells that I have never
used. Besides the fact that this is hardly a
reasoned argument, I would like to make
sure that the following facts about shells
are fully appreciated.

Editor's Note: It would be nice if
readers would forward a copy of of their
comments to Tel so that we could share
them with the rest of the readers.

ZCPR3-style shells are a facility of the
command processor. Without special
code in the CPR, there would be no such
shells. As the author of the two latest ver
sions of the ZCPR command processor, I
think I can speak with some authority
(though certainly not with infallibility) on
the subject, since in writing that code I
had to consider the issue of shells rather
carefully from a rigorous theoretical
viewpoint.

ZCPR2-style shells, quite the contrary,
are not a facility of the command
processor; they are a facility of the in
dividual shell programs. Their functioning
depends only on the operation of the
multiple command line facility. The
command processor does not treat a Z2
shell command any differently than it
treats any other command. This is really
the key to the difference between the two
shell implementations.

In the previous column I stated: " ... I
am coming to the conclusion that only
programs like history shells ... should be
implemented as ZCPR3-style shells. Other
programs, like ZFILER and WordStar
should use the ZCPR2 style." I then in
vited readers to enlighten me if I was
missing some important point. I got some
responses to this invitation, but no one yet
has offered me any evidence that I had
missed any important point.

One reader reiterated essentially the
same difference between Z2 and Z3 shells
that I attempted to demonstrate with my
example in which WordStar was invoked
in a multiple command line. Apparently
the point bears repeating.

This reader presented the point using a
command line like the following:

ZFILER;ECHO TESTING

30

Under ZCPR2, ZFILER would run and
present its file display to the user. If the
user generated a command line "CM
DUNE" as the result of a macro or in
response to the prompt after the 'Z'
command, a Z2-shell version of ZFILER
would build the command sequence
"CMDUNE;ZFILER" and insert it into
the multiple command line buffer just
before the next command to be executed.
This would give:

CMDLlNE;ZFILER;ECHO TESTING

The user's command line would run, and
then ZFILER would be invoked again.
Only on termination of ZFILER would
the last command, "ECHO TESTING",
be performed.

A Z3 shell would respond to the same
command line from the user in quite a dif
ferent way. As before, ZFILER would be
invoked first. It would determine from the
Z3 message buffer that it had been in
voked manually and would respond by
pushing its own name onto the shell stack.
Then it would terminate. The command
processor would then proceed to run
"ECHO TESTING". Only after that, on
ce the command line was empty, would
ZFILER be reloaded, this time as a shell.
Recognizing its shell status, it would now
display its screen of file names and do its
real work.

The reader who submitted this example,
if I understood him correctly, viewed the
Z3 behavior as correct and the Z2
behavior as wrong. If you are an experien
ced Z-System user, you will probably
recognize in this reader a fellow expert
(and, indeed, he is). He is so used to ZC
PR3 that he no longer notices that it is the
behavior of the Z3 shell that is truly
bizarre!

Consider the following two command
lines:

(1) ZFILERiECHO TESTING
(2) ECHO TESTING;ZFILER

We have already analyzed the first one;
the second one can safely be left as an
exercise for the reader. We will simply
state the answer that under ZCPR3 they
will accomplish exactly the same thing!
This is hardly a result that conforms to in
tuition, and I still remember in my early
days as a Z-Node sysop trying to explain
to quite a few users why the second com
mand on a VFILER command line
executes first!

Under ZCPR2 the result is just what
one would expect. In the first case,
ZFILER runs first, and ECHO runs only
after the user terminates ZFILER using its
'X' command. In the second case, ECHO
runs first and ZFILER second. In other
words, with Z2 shells, commands are
executed in the order they are entered, a
notion that does not require long ex
perience and great expertise to understand

and get used to! And it gives the user a
greater measure of control.

Mixed Z2 and Z3 Shells
The same reader submitted another in

teresting example that illustrates the con
fusing behavior that can arise when Z2
and Z3 shells are mixed. Here we assume
that WordStar has been implemented as a
Z2 shell and ZFILER as a Z3 shell. Sup
pose we use the 'R' command of Wor
dStar to enter the command "ZFILER".
WS4, as a Z2 shell, would generate the
command line

ZFILER;WS

ZFILER, as a Z3 shell, would install itself
on the shell stack and proceed to execute
"WS". ZFILER would not run in its file
maintenance mode until after we ter
minated WordStar.

This is, admittedly, probably not what
one intended, since we most likely entered
the ZFILER command with the intention
of doing some file maintenance before
returning to WordStar. On the other
hand, it is certainly no more bizarre than
what we saw in our earlier example.

If both WS4 and ZFILER were Z3
shells, then the invocation of ZFILER
from the WS4 'R' command would cause
it to become the active shell (the one on
the top of the shell stack). The WS4 shell
would be pushed down in the shell stack,
and ZFILER would take control. With a
little thought, however, you will see that
the same is also true if both ZFILER and
WS4 are Z2 shells!

The strange behavior with the mixed
shells in the above example arises in part
because ZFILER was not really being
used as a shell in the Z3 sense, namely, as
a replacement for the command
processor's command-line input routine.
It was intended as a file maintenance
utility.

Suppose we had entered the command
"EASE" (the Z3-type history shell) in
stead of "ZFILER" from our Z2 version
of WordStar. This would establish EASE
as the current shell and return to Wor
dStar. That behavior would not seem
strange, because in this case we would be
thinking of our EASE command as
establishing the shell to be used in place of
the command processor the next time the
command processor needed a new com
mand line. So long as WordStar is run
ning, there is no need for EASE to do
anything. We expect it to take effect only
after we are finished using WordStar.

Nested Z2 Shells and Recursive Aliases
Although I had once thought that the

Z3 shell stack was required in order to
nest shells, I showed in the earlier column
that this is not the case. Z2-style shells
can, in fact, be nested more flexibly.
There is no predetermined limit to the

The Computer Journal/Issue #35

• New Automatic, Dynamic, Universal Z-Systems

Selling & Supporting the Best in 8-Bit Software

Sage Microsysterns East

Same-day shipping of most products with modem download and support available.
Shipping and handling $4 per order (USA). Specify disk format. Check, VISA, or
MasterCard.

DIRjEASE

DIR will run, and then EASE will be rein
voked. Looks fine! But now suppose the
user enters the command "IF EXIST
FN.FT". EASE will then generate the
command line

IF EXIST FN.FTjEASE

If the file FN.FT exists, this will again
work just fine, but suppose the file does
not exist. Then the system will enter a
false flow state, and the EASE command
(and perhaps other commands pending in
the command line after it) will be flushed
by the command processor. The shell fun
ction will be lost, and any other pending
commands will be processed in an unin
tended way.

For a Z2 shell to function properly in
general, all command lines inserted by it
must result in the same flow state at the

- Run on Z80 or compatible computers

- Assembler Mnemonics: Zilog (Z80ASM, Z80ASM+), Hitachi
(SLRI80, SLRI80+), Intel (SLRMAC, SLRMAC+)

- Linkers: SLRNK, SLRNK+

- Memory-Based Versions ($50); Virtual-Memory Versions ($195)

do. I am still awaltmg an example of
something (good) that a Z3 shell can do
that cannot be done in some equivalent
way with a Z2 shell or recursive alias.

The Real Difference Between
Z2 and Z3 Shells

Sage Microsystems East
1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:00am - 1l:30pm)
Modem: 617-965-7259 (24hr, 300/1200/2400 bps

password = DDT, on PC-Pursuit)

• Plu·Perfect Systems

- Backgrounder 1I: switch between two or three running tasks
under CP/M-2.2 ($75)

- DateStamper: stamp CP/M-2.2 files with creation, modification,
and last access time/date ($50)

- JetFind: Super fast, extemely flexible text file scanner ($50)

- DosDisk: Use DOS~format disks in CP/M machines (only if ordered
with other items, $30 - $45 depending on version)

• SLR Systems (The Ultimate Assembly Language Tools)

• NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation with scripts ($60)

- Terminal Emulators: VT100, TV1925, DGI00 ($30)

- Z3PLUS: Z-System for CP/M-Plus computers ($69.95)

- NZ-COM: Z-System for CP/M-2.2 computers ($69.95)

- ZCPR34 Source Code: if you must customize ($49.95)

After much reflection, I think I have
finally put my finger on the fundamental
distinction between Z2 and Z3 shells. It
derives from the facts I alluded to earlier:
that the Z3 shell is a true creature of the
command processor and the Z2 shell is
not.

Here is an example that will illustrate
the point. Suppose the history shell EASE
were implemented as a Z2-style shell and
that while it is running, we issue the com
mand "DIR". EASE will insert into the
command line a sequence like the
following:

nesting depth or to the amount of infor
mation that can be passed with each shell
command line. The only limit is imposed
by the length of the multiple command
line buffer, just as with the nesting of
aliases.

With the standard shell stack con
figuration of 4 32-byte entries, if a shell
command uses only 16 bytes, 16 bytes are
wasted. On the other hand, if a shell
command needs 48 bytes to hold its in
formation, it cannot run at all under this
configuration (NZ-COM can come to the
rescue by allowing the shell stack con
figuration to be changed on the fly). With
Z2 shells, these problems go away. In 64
bytes of command line, one can have two
32-byte shell commands or a combination
of one 16-byte shell command and one 48
byte shell command (or five 12-byte shell
commands).

I did overlook one point when I
described putting data for the shells on the
command line. In the Z3 shell stack, one
can include, after the shell command's
terminating null, any binary data that one
wishes. Thus 256 values are possible for
each extra byte in the shell stack entry.

In order to carry shell data on the
command line, several additional con
straints apply. First, the command
processor strips the high bits off all
characters in the command line, so only
128 values are available to start with.
Secondly, the null character cannot be
used because the command processor
would interpret this as the end of the
command line (that leaves 127 values).
Finally, letters are converted to upper
case, thereby making the characters from
'a' to 'z' inaccessible (scratch another 26).
This leaves only 101 possible values out of
the original 256. Moreover, extra charac
ters are required as flags to signal the
program to consider itself as having been
invoked as a shell (a service provided in
ZCPR3 by a flag in the message buffer).
All of these things reduce the efficiency
with which the space in the command line
buffer can be used compared to the space
in the shell stack.

One reader pointed out that recursive
aliases cannot be used with Z2-type shells.
This is true ... but only if one is using the
pseudo-recursive alias that I invented.
This kind of alias accomplishes a crude
approximation to recursion by discarding
any pending commands in the command
line buffer. This will, indeed, discard any
shell reinvocation commands. However, if
one uses the logically sound and rigorous
recursive alias technique invented by
Dreas Nielsen (see my column in issue
#28), there is no problem. It sometimes
pays to do things right!

In fact, it seems to me that the Z2 shell
is, in essence, a recursive alias, a program
that keeps invoking itself. And this is just
what most (if not all) Z3 shells actually

The Computer Journal/Issue #35 31

Figure I: Values of the E register.

E 9h the command search path (PATH)
E 15h the named directory register (NDR)

E 18h the multiple command line buffer (MCL)
E 1Eh the shell stack (SHL)
E 22h the message buffer (MSG)
E 24h the external file control block (XFCB)

end of the command line as at the begin
ning. With a MENU shell it could be
possible for the system designer to guaran
tee this, since he can control which com
mands are generated by the shell. With a
history type shell it would be nearly im
possible to ensure that this condition
would always be met.

The critical feature of shell processing
under ZCPR3 is that flow processing is
suspended during the operation of shells.
This allows them to run, as they must,
even after the user has passed a command
that leaves the system in a false flow state.
The ZCPR33 Users Guide goes into some
detail on this matter, and had I remem
bered better what I wrote there, it would
not have taken me this long to come to the
essence of the Z2-vs.-Z3 shell issue.

Some Users of ZCPR33 have modified
the way the command processor deals
with flow control in shell processing. No
one has yet convinced me of the value of
this (the risks are undeniable). It still
seems to me that Z2-type shells and recur
sive aliases can accomplish the same thing,
but in a logically sound way.

I have extended an invitation to Dreas
Nielsen to write a series of columns for
TCl explaining his very powerful shell
programs. Since he is also one of the
people who has made this modification to
the CPR, perhaps he will also present the
other side of this story and explain why it
is necessary or desirable to treat shells the
way he does.

Remaking WordStar Release 4

When I first received my copy of Wor
dStar 4 and encountered problems with
the way it handled shells, I fired up the
DSD debugger and tried to figure out how
to fix it. After a considerable amount of
rummaging about in the code (and
especially trying to figure out what was
going on inside WS.OYR), I gave up.
Later I tried again ... and failed again. In
the course of preparing this column, I
decided to have one more go at it, and this
time things started to click.

The patches I will describe here are
preliminary and have not yet been exten
sively tested. In fact, as I write this, I am
the only one who has used them, and you
know what I said above about the dangers
of a test program that does not involve a
variety of Z-System users. So, you are
hereby recruited, if you are willing, to join
the test program.

Since I may very well have made some
mistakes, and since there are further
changes that people may want to make
(let's hear your suggestions), I will not
only give the results; I will describe the
process by which these patches have been
developed.

32

Cracking the Code
The first step toward changing the code

was figuring out how the virgin WordStar
was doing what it did. In particular, I
wanted to locate routines related to Z
System functions, so the first thing I tried
was searching for all references to address
109h, which contains the address of the Z
System environment (ENV). Any WS4
feature that made use qf a' Z-System
facility would have to get information
from the ENY.

As best I recall, this did not turn up
many references and did not particularly
help (though it was a good idea, and that's
why I mention it). In the end, I just star
ted tracing the code from the beginning,
figuring that WS4 would have to deter
mine fairly early whether it was running
under Z-System or standard CP/M. This
turned out to be correct, and very soon I
came to the key Z routine, at address
OAA4h in WS.COM. This routine returns
the address and size of a Z-System module
specified by an offset passed in the E
register.

Having discovered this routine, I used
DSD to find all references to it in
WS.COM and WS.OYR. They occur with
the values of E shown in Figure I.

Setting up the Shell Stack
The block of code beginning around

address 3CBFh in WS.OYR makes
references to MCL, XFCB, and SHL. I
guessed correctly that this had to be the
code where WS4 sets up its shell stack en
try. (This block of code, by the way, is
where the shell-pushing mistake occurs
for the case where the shell stack is curren
tlyempty.)

The patch for this part of WS.OYR (see
Listing I) modifies this code. First of all,
since WS4 is going to operate as a Z2-type
shell, we do not want it to do anything
with the shell stack. It is easy to disable
the code by simply skipping over it, but
one has to watch out for subtleties. In
deed, in order for the 'R' command to use
the MCL and not chain using the greatly
inferior CP/M method, WS4 has to think
that the shell entry was established suc
cessfully.

I noticed that a flag was being set into
address 2200h, and I surmised that it is
used by WS4 to show that it is running
under Z-System. In the patch, I set this
flag even though the shell stack entry is
not being set up. I have not examined all
references to this flag, and there is a chan
ce that there are additional, more complex
effects. If any problems appear with the
patched version of WordStar, this flag
might be involved. For the initial attempt
at fixing WS4, I just took the easiest cour
se of action, and so far it appears to have
worked.

It seemed foolish to waste space in
WS.OYR by doing nothing more than set
ting the flag and jumping to where the
original code resumed (60AAh). Instead, I
have used the space to compute the com
mand line necessary to reinvoke Wor
dStar. The code gets not only the name by
which WordStar was invoked but also the
drive and user number from which it was
loaded. A command line of the form
";DUU:WSNAME" is generated.

There is one extra step in this part of the
patch. When running as a Z3 shell, WS4
knows from the command status flag in
the message buffer when it was invoked as
a shell so it can put up the press-any-key
message before clearing the screen and
resuming operation. As a Z2 shell, WS4
cannot use this facility. Instead, a signal
has to be included in the command tail.
For reasons that I will not go into in full
detail, I chose for this signal a comma at
the very end of the tail. Very briefly, the
comma is a handy character because it is
not parsed into the default file control
blocks, where a program could confuse it
with a file name.

The final reinvocation command line,
with its terminating null, takes the form

jDUU:WSNAME ,<0>

Since I could not be sure that this section
of overlay code would persist in memory
until the command would be used, I store
it at the top of the WS4's user patch area
(MORPAT).

The Computer Journal/Issue #35

LISTING 1

; Program: lJordStar Shell Modification Patches

; Author: Jay Sage

Date: August 7, 1988

i Patches to make the \olordStar Release 4 I R I command operate as a ZCPR2-type

shell. Several routines in IoIS.COM and IoIS.QVR must be changed.

1. W"ordStar must be prevented from pushing its name onto the Z-System shell

stack. However, a flag that is used by the tR I command to determine how

to operate must be set as if WS4 had set itself up as a shell.

2. The popping of the shell stack when 10154 termjnates must be disabled.

J. The user inp'Jt to the prompt from the 'R' command must be handled

differently. A command to reinvoke WS4 must be appended to the user I s

input I and then any commands pending in the multiple command line buffer

must be added as well. The result is then placed into the command line

bUffer. If overflow occurs, the user command is ignored, and an error

message is displayed until a key is pressed. The chaining command is of

the form!! jDUU:WSNAME , I I. The comma at the end of the command tail is

USed as a signal that WS4 was invoked as a ZCPR2 shell.

4. An qptional patch can be included to defeat the use of the path for

searching for the overlay files. An internal path can be specified.

The Initialization and
Termination Patches

Having made the above modification,
we must make two others in order to
remain consistent. First, we must modify
the WS4 initialization code in which it
determines whether or not it was invoked
as a shell. This is the patch at address
IA2Fh in WS.COM. The patch calculates
the address of the last character passed in
the command tail and checks to see if it
was a comma. If not, it proceeds with
normal operation of the program.

If there is a comma, the shell-wait
message must be displayed until the user
presses a key. But one must also remove
the comma from the command tail to en
sure that WordStar not think it has been
passed a file name. At-present I do this by
replacing the comma with a space. This is
not rigorous, but it seems to work, since
WS4 is apparently not confused by a tail
consisting only of spaces (unfortunately, a
number of programs are).

Since WS4 no longer pushes its name
onto the shell stack, we must also prevent
it from popping the shell stack when it
terminates. This is the patch at address
l3CEh in WS.COM. This is the easiest
patch of all, since we simply have to skip
some code. As an additional benefit, this
frees up about 40 bytes of space that we
use for some of our other patch code.

Fixing the 'R' Command
Now we come to the main item in this

set of patches-the code that makes the
'R' command work as a ZCPR2-type
shell. The new code here is much more
complex than what it replaces, and we can
only fit part of it at the original location
67B2h in WS.OVR. We put what we can
there and continue with the rest in the
MORPATareain WS.COM.

The basic strategy is to take the com
mand line entered by the user in response
to the 'R' command prompt, append the
WS reinvocation command (including its
semicolon separator), and append any
remaining command line pending in the
multiple command line buffer (if there is
one, it will begin with a semicolon also). If
there is enough room for the result in the
MCL, then it is moved there and chained
to. If not, a warning message is displayed
on the screen until a key is pressed, and
the user command is ignored.

To implement this strategy, I chose the
simplest method I could think of. Since
the 'R' command operates from the Wor
dStar no-file menu, the entire WS edit

Offset to user number where WS.COM found

User number to B

Now work on user number

Tens value

Advance to next letter

Insert colon

Get pointer to XFCB again

Maximum of 8 letters

Drive to A

Convert drive to letter

Point to buffer at end of patch area

Command separator

Stash units digit

Convert units to ASCII

Stash tens digit

Store drive letter

j Quit at first space

; Quit after eight characters

Use internal path to find QVR files?

Patch area

Keep progr8Jll _! ! i DUU: PROGNAME , <0> I !

WordStar ENV offset routine

i Z-System running flag

; Euffer for !R! command input

Beginning of user! s command line

Clear screen character sequence

Routine to perform screen functions

Routine to output character in A to console

Bell character

z, copydone

nz, copyname

de

b,8

(h1). a

hi

b

de

PATCHES TO WS. OVR

(h1).e

h1

(h1) ,a

h1

(hl),! :

nc, tens
10+!0 1

not no

yes

045bh

morpat+128-16

0aa4h

2200h

lfJ8h

rcmdbuf+l

0J86h

17c7h

0280h

07

inc

inc hI

inc
dec

jr

ld

jr

add

Id

inc

1d

inc

1d

1d

pop

1d

inc

sub 10

ld a,(de)

cp

jr

1d

copyname:

tens:

Modifications to the code that pushes WordStar onto the shell stack.

This patch prevents the WordStar shell entry from being set up, but it

sets the flag in 2200h that makes WordStar think that it has set it up.

In this way, the rR! command will work as it would with shells engaged.

The space is used to determine the command line needed to reinvoke

WordStar. The ZCPRJ3 facility for returning the directory in which the

program was located is used to provide an explicit DU: prefix. The

; resulting command line is kept at the end of the user patch area.

offset defl 2J80h Real address ;,; address in overlay + offset

org 3cbfh Place to install patch

Id e,24h Get pointer to XFCB

call envoff HL -> XFCB

push hI

ld de,0dh

add hl,de

ld b, (hl)

inc hl

ld a, (hl)

add a,IA'-l

Id hl, namebuf

ld (h1), '; ,

inc hI

1d (h1).a

inc hI

no equ

yes equ

intpath equ

morpat equ

narnebuf equ

envoff equ

zflag equ

rcrndbuf equ

remd equ

clrscr equ

sernfn equ

conout equ

bell equ

802J

BFJC

JCBF lE 24

JCCl CD A40A

JCC4 E5

JCC5 11 0D00

JCC8 19

JCC9 46

JCCA 2J

JCCB 7E

JCcc C6 40

JCCE 21 CB04

JCDl J6 Ja

JCDJ 2J

JCD4 77

JCD5 2J

JCD6 78

JCD7 0E 2F

JCD9

JCD9 0C

JCDA D6 0A

JCDC J0 FB

JCDE C6 JA

JCE0 71

JCEl 2J

JCE2 77

JCEJ 2J

JCE4 J6 JA

JCE6 2J

JCE7 01

JCE8 06 08

JCEA

JCEA lJ

JCEB lA

JCEC FE 20

JCEE 28 05

JCF0 77

JCFl 2J

JCF2 05

JCFJ 20 F5

0000

FFFF

FFFF

5804

CaM

A40A

0022

J81F

J91F

860J

C717

8002

0700

The Computer Journal/Issue #35
33

j --

PATCHES TO WS. COM

lenloop:

db bell, 'MCL Ovfl - press any key ... $'

Put in terminating null

Fool WS into thinking shell installed

Real address", address 1n overlay - offset

Area to use as scratch buffer

Addre s 5 in WS. OVR

Point to 'R! command buffer

Get length into Be

Point to user's command

Scratch buffer in RAM

Copy user's command to buffer

Point to WS4 reinvocation command line

Copy through ending null

Continue in patch area

Get pointer to next command into DE

Save pointer to buffer

Get pending commands from MeL

Wei t for key to be pressed

Pretend no user input

Offset to command line in buffer

Reverse pointers

HL " MCL, OE " MCL+4

Set up pointer in MCL

Source for command line

Copy it in

Chain to command line from WS

; Put shell signal tail (8 comma)

j Switch into HL as source for copy

i Destination pointer into buffer

Copy through ending null

Clear the screen

; Display error message

(hl),' ,

hl

(hl),', '

hl

(hl) ,0

a,elffh

(zflag),.

60aah

60aah - offset

endaddr - endlpat

$ gt endaddr

de,hl

(hI), e

hl

(hI) ,d

lenloop

de, er:Offisg

c,9

0005h

sak

7f4eh

hI, scra~ch

cpy2nul

13f6h

de,4

de,hI

add hl,de

ld

inc

ld

ld

call

jp

Id a, (de)

or
j r z, oklength

inc de

This is the continuation of the patch in WS.OVR that inserts the user's

command line, together with the WS reinvocation command, into the multiple

command buffer.

org morpat

push de

ld e,18h

call envoff

ld e, (hl)

inc hI

ld d, (hl)

ex de,hl

pop de

call cpy2nul

Id hI, ~lr::;cr

call scrnfn

copydone:

ld

inc

ld

inc

ld

ld

ld

jp

endlpat:

endaddr defl

free defl

if

endif

offset defl -le00h

scratch equ 0a000h

org 67b2h

Id hI, rcmdbuf

ld c, (hl)

Id b,0

inc hI

Id de,scratch

Idir

Id hl,namebuf

call cpy2nul

jp morpat

; --

This patch takes the user I s response to the PRt command, adds the command
to reinvoke WordStar, and appends any pending commands in the command line

buffer. The result is written out to the command line buffer. This

implements a ZCPR2-style shell for the 'R I command.

If the resulting command line is too long for the MCL, an error message is

displayed until a key is pressed, and then loiS resumes as if no command line

had been entered.

The first part of this patch replaces code in IoiS.OVR. There is not enough

space there for all the code, so it continues in the user patch area.

end2pat:

free defl 67cbh - end2pat

if $ gt 67cbh

endif

ld e, 18h Get MeL pointer

call envoff HL -> MCL buffer, A = max characters

; Check length of new command

Id de, scratch Point to new command line

Id b,a ; Max length in B

; --

djnz

ld

ld

call

call

jp

oklength:

ld

errmsg:

5804

045B 05

045C 1E 18

045E CO A40A

0461 5E

0462 23

0463 56

0464 E8

0465 01

0466 co 0113

0469 21 8603

046C CD C717

046F 1E 18

0471 CD A40A

0400

0000

3CF5

3CF5 36 20

3CF7 23

3CF8 36 2C

3CFA 23

3CFB 36 00

3CFO 3E FF

3CFF 32 0022

3002 C3 AA60

3005

2A3D

2500

0000

0474 11 00A0

0477 47

0478

0478 1A

0479 B7

047A 28 11

047C 13

0470 10 F9

047F 11 9F04

0482 0E 09

0484 CO 0500

0487 CO 491A

048A C3 4E7F

0480

048D 11 0400

0490 EB

0491 19

0492 EE

0493 73

0494 23

0495 72

0496 21 00A0

0499 CD 0113

049C C3 F613

049F

049F 07 4D 43 4C

00E2

00A0

B267

67B2 21 381F

67B5 4E

67B6 06 00

67B8 23

67B9 11 00A0

67BC ED B0

67BE 21 CB04

67C1 CO 0113

67C4 C3 5B04

67C7

buffer is available as a scratch area. I
picked an arbitrary address of AOOOh for a
buffer in which to build the new com
mand line. Again, rigorous code calculate
the address. My code is a quick-and-dirty
solution.

Finding the Overlay Files
As I noted earlier, with my style of

operation, WS4 had trouble finding its
overlays. To solve that problem, the patch
includes an optional section to install an
internal search path for the overlay files.
This patch is installed at address OF5Fh in
WS.COM, where it replaces a call for the
location of the Z-System path with a call
to a routine that returns the address and
size of an internal path. In Listing 1 the
internal path has the single element B4:,
the directory in which I keep my Wor
dStar program files. You can put any
values you want here.

Installing the Patches
It is not possible to install the patches in

WS.OVR using MLOAD or a debugger,
because the OVR file is too large to load
entirely into memory. ZPATCH, on the
other hand, can handle the job splendidly.
ZPATCH assumes an offset of 0000 for a
file of type OVR, while the addresses in
the listing are those shown when the file
(as much as can fit) is read into memory
under a debugger. To make things con
sistent, you should use the ZPATCH '0'
command to set the offset to 100.

Key in the new data carefully, checking
from time to time that the address is still
correct. Also, be careful not to go beyond
a record boundary while in ZPATCH. It
wraps from the end of the record back to
the beginning of that record without war
ning (this really gave me grief until I
caught on to the problem). When you get
to the end of the current record, write it
out (AW), advance to the next record (»,
and reenter edit mode (E). Then you can
resume entering data.

The attached listing was made with a
specially configured version of the SLR
Z80ASM assembler. Normally, I have it
display addresses in logical order for
easier interpretation. For hand keying of a
patch, however, it is far more convenient
to have the bytes of a word in physical or
der. Just watch out when reading the
displayed symbol values. They, too, are
stored in byte-reversed format.

34 The Computer Journal/Issue #35

; --- ---------------

It is possible to use MLOAD to install
just the patches for WS.COM. Simply
delete the parts of WSPAT.Z80 that refer
to patches in WS.OYR and assemble the
remaining code to a HEX file.

Enjoy playing with (and using) this dif
ferent (improved) version of WordStar 4,
and let me know what you think and what
further suggestions you have. •

Must fill 5 bytes

This is where z3 path location is determined

Call alternative routine

namebuf - endJpat

$ gt namebuf

nop

nop

endif j intpath

This optional patch causes WS4 to use an internal path to locate

its overlay files.

if intpath

org 0f5fh

call setpath

endJpat:

free defl

if

endif

FFFF

5F0F

CO 0913

00

00

0F00

0000

20 4F 76 66

6C 20 20 20

70 72 65 73

73 20 61 6E

79 20 68 65

79 2E 2E 2E

24

0F5F

0F62

0F63

04A3

04A7

MAE
04AF

04B3

0487

04B8

04BC

i -- --- --- - -- ---

i ----- -- ----- --- --- -------------- - -- - ------- ----- --- ---- -----

It is easy to get in the habit of using
company trademarks as generic terms, but
these registered trademarks are the
property of the respective companies. It is
important to acknowledge these
trademarks as their property to avoid their
losing the rights and the term becoming
public property. The following frequently
used marks are acknowledged, and we
apologize for any we have overlooked.

Where these, and other, terms are used
in The Computer Journal, they are
acknowledged to be the property of the
respective companies even if not
specifically acknowledged in each oc
currence.

Registered Trademarks

Apple II, II +, IIc, lIe, Lisa, Macin
tosch, DOS 3.3, ProDos; Apple Come
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam
per, BackGrounder ii, DosDisk; Plu*Per
fect Systems; Clipper, Nantucket; Nan
tucket, Inc. dBase, dBase II, dBase III,
dBase III Plus; Ashton-Tate, Inc.
MBASIC, MS-DOS; Microsoft. Wor
dStar; MicroPro International Corp.
IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor
poration. Turbo Pascal, Turbo C;
Borland International. HD64180; Hitachi
America, Ltd. SB180 Micromint, Inc.

Get length into L

In effect, add 80h

Point to command tail

.. until a key is pressed

Echo carriage return

Get last character

See if it is a comma

Not a 1 shell', so go on ahead

Get rid of the comma

Display 'shell wait I message

(note: message is trashed by other code and

.. cannot be called from elsewhere)

Wait for key to be pressed

Proceed normally

Poll (:onsole input status

Modification to initialization code where WS4 determines if it was

invoked as a shell. We have defined a convention where a comma on

the end of the command line signals WS4 to display its shell-wait

message and wait for the user to press a key.

org 1a2fh

1d hi,80h

id 1, (h1)

Modification to the termination routine that pops the shell stack.

j This patch eliminates the popping of the shell stack on exit from
j WordStar. The space from the end of this patch to 13f6h is available

for other uses (40 bytes).

erg l]ceh

jp 1)f6h ; Exit routine

This routine copies the string pointed to by HL to the address pointed to by

DE until a null byte is encountered. The null byte is copied as well.

cpy2nul:

1d a, (h1) ; Get source character

1d (de) ,a Put into destination

or Check for null

ret If so, quit

inc hi Bump up pointers

inc de

jr cpy2nul

Alternative internal path routine

if intpath

setpath:

1d hl,path0 Point to internal path size

1d a, (hl)

inc h1 Point to actual path

or Set flags

ret

path0 : db 2 Allow up to two elements

db 2 Drive (A=l)

db 4 User

db 0,0 Space for another entry

db 0 Terminating null

endif ; intpath

end4pat:

free defl 13f6h - end4pat

if $ gt 13f6h

endif

set 7,1

id a, (h1)

cp

jr nz ,la5fh

ld (hl), '

1d de,lb10h

ld c ,9

call 0005

call sak

jr 1a5fh

sak:

ld e,0ffh

id c,6

call 0005

j r z,sak

1d e,0dh

id c,6

jp 0005

end5pat:

free defl 1a5fh - end5pat

if $ gt 1a5fh

endif

end

CE13

13CE C3 F613

1301

1301 7E

1302 12

1303 87

1304 C8

1305 23
1306 13

1307 18 F8

FHF

1309

1309 21 E013

130C 7E

1300 23

130E 87

130F C9

13E0 02

13E1 02

13E2 04

13E3 00 00

13E5 00

13E6

1000

0000

2F1A

1A2F 21 8000

1A32 6£

1A33 CB FD

1A35 7E

1A36 FE 2C

1A38 20 25

1A3A 36 20

1A3C 11 1018

1A3F 0E 09

1A41 CO 0500
1A44 CO 491A

1A47 18 16

1A49

1A49 1E FF

1M8 0E 06

1A40 CO 0500

1A50 B7

1A51 28 F6

1A53 1E 00

1A55 0E 06

1A57 C3 0500

1A5A

0500

0000

The Computer Journal/Issue #35 35

Editor

(Continued from page 3)

license or royalty fees, and also protect
your source code.

Predictions for 1990
What changes will we see by the end of

1990? Will IBM still reign supreme? Will
the standard hard drive be 200 Megs? Will
we even be using hard drives, or will they
have been replaced by erasable optical
drives?

Submit your predictions. Send a few
words or a paragraph to be compiled with
others, or send an article. Be fearless and
sign your name, or send it anonymously,
but send it by December 31, to be included
in issue #37. Perhaps we can even get Hal
Hardenbergh to share a few words of
wisdom.

We need lots of input, so tell your
friends, announce it at meetings, post a
message on BBSs-tell them to mail their
predictions to TCJ. Most importantly,
send YOUR predictions.

Modula-2
I have wanted to establish a public

domain library of functions which can be
linked in to the user's program. C looked
very attractive because of its library and
linking features. The problem is that it is
difficult to control scope and parameter
passing between functions written at dif
ferent times or by different people. Ver
sions 4 and 5 of Turbo Pascal® support
separate compilation and linking of units,
but they make no improvement in the con
trol of scope and parameter passing.

Either C or Turbo Pascal can work very
well for a single programmer who is very
diligent about controlling the scope and
parameter passing between code sections
which are to be linked. They do not work
well where code sections created at dif
ferent times or by different people are
used.

Modula-2 was designed to provide the
scope and parameter controls which are
missing in the other languages. Its syntax
is very similar to Pascal, but there are a lot
of additions which minimize Pascal's
weaknesses.

It appears that Modula-2 is the most
suitable language currently available
commercially at a very reasonable price,
which can be used to establish a library of
portable code sections (modules). For
example, the module CornpDir, which star
ts on page 4, runs on MS-DOS, CP/M, or
Atari machines when it is compiled using
the appropriate Modula-2 compiler.

The article by Dave Moore in this issue,
is the beginning of a regular section
covering Modula-2. The main coordinator
for the Modula-2 section is Barry Work
man (Workman & Associates 818-791
7979). The CompDir module is included

36

Make certain that TCJ follows you
to your new address. Send both old and
new address along with your
expiration number that appears on
your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad
Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.
Please allow six weeks notice. Thanks.

in his Editor/Toolkit, and he offered to
include the CompDir module with his
compiler if the reader mentions this article
when ordering.

Your input is needed. Send your articles
and disk contributions, or tell Barry or I
what you would like to see. We'll start a
Requested Module Register if you let us
know what you need.

Expert Systems
The fields of expert systems and ar

tificial intelligence have attracted a lot of
attention, but most of the work has been
theoretical with few real world ap
plications. Too many of the books give
kindergarten level examples such as,
"Jane has red hair, June has blond hair,
Tom likes someone who has red hair.
Who does Tom like?").

There is a need in business and industry
for expert systems, but the programming
tools have not been available. Prolog and
Lisp are the commonly accepted AI and
expert systems languages, but the learning
curve is very steep for someone who wants
to create an expert system for an urgent
real world application.

Our interest is in creating expert systems
for applications such as diagnosing post
polio syndrome, and expert system shells
for databases. I want to create expert
systems, without spending months lear
ning Lisp or Prolog, and I have been sear
ching for a suitable tool.

Weare now evaluating Ist Class Fusion
(1st Class Expert Systems, 1-800-872
8812). Fusion can create expert systems
based on either rules or examples, it can
read, write, or append dBASE III files,
examples can be imported from an exter
nal database, and it can generate program
source code for Pascal, C, or production
rules. A run time program is included so

that the finished advisors can be
distributed royalty free.

Our initial evaluation indicates that
Fusion is well suited for our applications.
Tom Hilton and I are working on a more
extensive evaluation, and an in-depth
evaluation will be presented in a future
issue.

The way people interface with com
puters (more properly, the way computers
interface with people) will have to change
as more people use computers as applian
ces. New software will have to use im
proved interfaces, and existing programs
will have to be revised. Methods of ac
cessing knowledge bases and accessing ex
pert's knowledge must also be improved.

Opportunities in the fields of expert
systems, knowledge bases, and expert
system shells are wide open. We are very
interested in hearing from anyone
working in these fields.

Gremlins Strike
We typeset code listings directly from

the author's file in order to avoid errors,
but sometimes the gremlins still manage to
screw things up. After issue #33 was ship
ped, we discovered that we were getting
errors in the serial link between the com
puter and the typesetter (there are no
provisions for error checking in the
typesetter interface).

There were several transmission errors
in Sage's listings on pages 36 and 37 of
issue #33. The most serious was in Listing
3, where exitsub was shown as 03vh. That
was a transmission error. Since that is ob
viously not a hex number, people used the
value of 03b2h in listing 2. Unfortunately,
that was an error on Sage's disk. The
correct value is 03beh. •

The Computer Journal/Issue #35

Back Issues Available:

Issue Number 18:
• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• S-l00 Graphics Screen Dump
• The LS-loo Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 1
• The Computer Corner
Issue Number 19:
• Using The Extensibility of Forth
• Extended CBIOS
• A$500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com
municating with Telephone Tone Con
trol, Part 2
• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Corner
Issue Number 20:
• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a S-loo Floppy Disk Controller:
WD2797 Controller for CP1M 68K
• The Computer Corner

Issue Number 21:
• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:
Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner
Issue Number 22:
• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner
Issue Number 23:
• C Column: Flow Control & Program
Structure
• The Z Column: Getting Started with
Directories & User Areas
• The SCSI Interface: Introduction to
SCSI
• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to
Create Index
• The AMPRO Little Board Column

The Computer Journal/Issue #35

Issue Number 24:
• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for
CP/M
• The CColumn: Software Text Filters
• AMPRO 186 Column: Installing MS
DOS Software
• The Z Column
• NEW-DOS: The CCP Internal Com
mands
• ZTIME-l: A Realtime Clock for the
AMPRO Z-80 Little Board
Issue Number 25:
• Repairing & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
Issue Number 26:
• Bus Systems: Selecting a System Bus
• Using the SB180 Real Time Clock
• The SCSI Interface: Software for the
SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con
tinued
• ZSIG Corner
• Mfordable CCompilers
• Concurrent Multitasking: A Review of
DoubleDOS
Issue Number 27:
• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:
Disassembling Z-80 Software
• Feedback Control System Analysis:
Using Root Locus Analysis and Feed
back Loop Compensation
• The C Column: A Graphics Primitive
Package
• The Hitachi HD64180: New Life for 8
bit Systems
• ZSIG Corner: Command Line
Generators and Aliases
• A Tutor Program for Forth: Writing a
Forth Tutor in Forth
• Disk Parameters: Modifying The
CP/M Disk Parameter Block for Foreign
Disk Formats
• The Computer Corner

Issue Number 28:
• Starting Your Own BBS: What it takes to
run a BBS.
• Build an AID Converter for the Ampro
L.B.: A low cost one chip AID converter.
• The Hitachi HD64180: Part 2, Setting the
wait states & RAM refresh, using the PRT,
and DMA.
o Using SCSI for Real Time Control:
Separating the memory & I/O buses.
• An Open Letter to STD-Bus Manufactur·
ers: Getting an industrial control job done.
o Programming Style: User interfacing
and interaction.

o Patching Turbo Pascal: Using disassem
bled Z80 source code to modify TP.
• Choosing a Language for Machine
Control: The advantages of a compiled
RPN Forth like language.

Issue Number 29:
• Better Software Filter Design: Writing
pipable user friendly programs.
o MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part one.
• Using the Hitachi HD64180: Embedded
processor design.
• 68000: Why use a nes OS and the 68000?
• Detecting the 8087 Math Chip: Tem
perature sensitive software.
• Floppy Disk Track Structure: A look at
disk control information & data capacity.
o The ZCPR~ Corner: Announcing ZC
PR33 plus Z-COM Customization.
o The Computer Corner.
Issue Number 30:
o Double Density Floppy Controller:
An algorithm for an improved CP/M BIOS.
• ZCPR3 lOP for the Ampro L.B.:
Implementing ZCPR3. lOP support
featuring NuKey, a keyboard re-definition
lOP.
o 32000 Hacker's Language: How a
working programmer is designing his
own language.
o MDISK: Adding a 1 Meg RAM disk to
Ampro L.B., part two.
o Non-Preemptive Multitasking: How
multitasking works, and why you might
choose non-preemptive instead of
preemenptive multitasking.
o Software Timers for the 68000: Writing
and using software timers for process
control.
• Lilliput Z-Node: A remote access
system for TCJ subscribers.
o The ZCPR3 Corner
·The CP/M Corner
• The Computer Corner

Issue Number 31:
o Using SCSI for Generalized 110: SCSI
can be used for more than just hard drives.
o Communicating with Floppy Disks: Disk
parameters and their variations.
o XBIOS: A replacement BIOS for the
SB180.
oK-OS ONE and the SAGE: Demystifing
Operating Systems.
• Remote: Designing a remote system
program.
o The ZCPR3 Corner: ARUNZ documen
tation.
• The Computer Corner

Issue Number 32:
• Language Development: Automatic
generation of parsers for interactive
systems.
• Designing Operating Systems: A ROM
based O.S. for the Z81.
o Advanced CP/M: Boosting Performance.

(Continued)

37

• Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories &an
in-depth look at the FCB.
• WordStar 4.0 on Generic MS-DOS
,Systems: Patching for ASCII terminal
based systems.
• K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.
• The ZCPR3 Corner: NZCOM and ZC
PR34.

Issue Number 33:
• Data File Conversion: Writing a filter to
convert foreign file formats.
• Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.
• DataBase: The first in a series on data
bases and information processing.'
• SCSI for the S-100 Bus: Another exam·
pie of SCSI's versatility.
• A Mouse on any Hardware: Implemen
ting the mouse on a Z80 system.
• Systematic Elimination of MS-DOS
Files: Part 2-Subdirectories and extnded
DOS services.
• ZCPR3 Corner: ARUNZ, Shells, and pat·
ching WordStar 4.0

Issue Number 34:
• Developing a File Encryption System:
Scramble data with your customized en
cryption/password system.
• DataBase: A continuation of the
database primer series.
• A Simple Multitasking Executive:
Designing an embedded controller
mUltitasking system.
• ZCPR3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.
• New Microcontrollers Have Smarts:
Chips with BASIC or Forth in ROM make
these chips easy to program.
• Advanced CP/M: Operating system ex
tensions to BDOS and BIOS, RSXs for
CP/M 2.2.
• Macintosh Data File Conversion in Tur
bo Pascal.

r---~

TCJ ORDER FORM
Subscriptions U.S. Canada Surface

Foreign
Total

6 issues per year
o New 0 Renewal 1 year $16.00

2 years $28.00

Back Issues ----------------- $3.50 ea.
Six or more ----------------- $3.00 ea.
's

$22.00
$42.00

$3.50 ea.
$3.ooea

$24.00

$4.75 ea.
$4.25 ea.

All funds must be in U.S. dollars on a U.S. bank.

Total Enclosed

o Check enclosed 0 VISA 0 MasterCard Card # _

Expiration date, Signature _

Name _

Address _

City State, ZIP _

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

L _

38 The Computer Journal/Issue #35

Issue Number 4:
• Optronics, Part 1: Detecting,
Generating, and Using Light in Elec
tronics
• Multi-User: An Introduction
• Making the CP1M User Function More
Useful
• Build Hardware Print Spooler: Part 3
• Beginner's Column: Power Supply
Design

Issue Number 2:
• File Transfer Programs for CP1M
• RS·232 Interface Part Two
• Build Hardware Print Spooler: Part 1
• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II
• Beginner's Column: Basic Concepts
and Formulas

Issue Number 6:
• Build High Resolution S-loo Graphics
Board: Part 1
• System Integration, Part 1: Selecting
System Components
• Optronics, Part 3: Fiber Optics
• Controlling DC Motors
• Multi-User: Local Area Networks
• DC Motor Applications

Issue Number 1:
• RS-232 Interface Part One
• Telecomputing with the Apple II
• Beginner's Column: Getting Started
• Build an "Epram"

Issue Number 3:
• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an AID Converter for the Apple
II
• Modems for Micros
• The CPIM Operating System
• Build Hardware Print Spooler: Part 2

Issue Number 8:
• Build VIC-20 EPROM Programmer
• Multi-User: CPINet
• Build High Resolution S-l00 Graphics
Board: Part 3
• System Integration, Part 3: CP1M 3.0
• Linear Optimization with Micros

Issue Number 14:
• Hardware Tricks
• Controlling the Hayes Micromodem II
from Assembly Language, Part 1
• S-l00 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter
facing the Sinclair Computers, Part 2

Issue Number 15:
• Interlacing the 6522 to the Apple II
• Interfacing Tips & Troubles: Building
a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II
From Assembly Language, Part 2
• The State of the Industry
• Lowering Power Consumption in 8"
Floppy Disk Drives
• BASE: Part Three

Issues-1, 2, 3, 4, 6, 8,14,15, and 16
3 or more, $1.50 each postpaid in the U.S.

Outside of the U.S., 3 or more, $2.50 each postpaid surface.
List your second choice if possible.

Subject to the supply on hand.
Other back issues are available at the regular price.

Issue Number 16:
• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the 8-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter

Use TCJ Order Form

The Computer Journal/Issue #35
39

THE COMPUTER CORNER
by Bill Kibler

Well, this month catches me as busy as
ever, and unfortunately not with com
puters. I just completed the process of
moving, and getting started on rebuilding
the computer room. I do have some topics
to comment on, like the SOG.

The SOG is a once a year get together in
Oregon, and it is usually a time for the
Computer Journal staff to meet face to
face. This year was a bit different as the
meeting didn't have the use of the colleges
dorms, and I feel that the lack of dorms
cut down on the number of people as well
as all around activities.

The attitude of most people there was
rather low key, and I found few of the
talks worth going to. A few of us talked
this over and had mixed feelings about
what was going on. My personal feelings
are based on my personal situation as well
as my impressions of the industry as a
whole.

A Sogger's Profile
To understand the people that go to the

SOG, it might help to create a profile of
what a typical SOGee is. Most SOGGERs
have been working with computers longer
than MSDOS has been around, in fact
most probably remember IBM's two
previous failures to enter the micro
market. I dare say that most have
anywhere from 3 to 10 computers, either
at home or at least at their disposal. They
probably use and understand two or three
operating systems. Dealing with hardware
is a fact of life for them, as well as assem
bly language programming.

For most of us the SOG has previewed
many new ideas and products. Some of
those ideas have had impact on the in
dustry, while others haven't been seen
again. With that profile in mind and the
idea that new products are a feature of the
SOG, it is not too hard to understand why
many of us were rather low key this year. I
didn't see anything I would consider new
or on the leading edge. Several of the in
novators were absent this year, adding to
the lack of spark.

Spark and controversy were definitely
missing. At times I personally had a
depressed outlook. I kept feeling that

40

most SOGGERs had given up on com
puters. That could be a product of the PC
syndrome, or just burn out. I know mine
is from watching the industry shoot itself
in the foot. Whatever the cause, should
next year be like this year, it will be my
last trip to Bend.

The Computer Media
I recently received my August issue of

MINI-MICRO SYSTEMS which was
devoted to UNIX and MSDOS/OS2. I
stopped reading after the third article.
The bias expressed in the articles was so
clear to those of us who have been around
for a while. The bias I talk about is the PC
syndrome. Their computer revolution
started with the PC and not CP1M or Ap
ples. I found their talk about MSDOS
being the only micro operating system a
bit hard to take, even when they have a
smaller article talking about DRI's
MSDOS replacement operating system.
Nowhere in any of the articles was there
anything about DRI's DOS386 which is
available now, and for my feelings a better
system than OS/2 will ever be.

Over the years I have been saying that
the only reason the PC has done as well as
it did was due to media hype. I can still
remember when BYTE introduced the
machine with such glowing reviews. Of
course later they got in trouble when
people found out they were paid indirectly
to say that. I still remember a conver
sation with a real estate agent in northern
California who was waiting for IBM to do
it before he would buy a computer. This
person didn't know anything about com
puters, how they worked, or even what his
real needs would be in using one. His only
criteria was the name, nothing else mat
tered.

RTX and Other Products
I hope that one big sale does go

through, that being HARRIS's buying of
GE's silicon factories. As I write this GE
is selling off their acquired RCA and GE's
semiconductor factories. Harris is in the
process of trying to get them, mostly for
the government business. My interest is
their RTX 2000, or a NOVIX based CPU

PLUS. My NOVIX was a great turn on
for most people at the SOG, but I didn't
find a buyer. I am trying to sell my
Plexiglas machine because I want to buy
the RTX system and experiment around
with it.

Harris has released more information
on the RTX and in fact they have a small
dog and pony show making it to many of
the Forth local chapter meetings. I now
have a copy of their programmer's guide,
and what it can do now over the NOVIX
is really impressive. The addition of a
memory management unit, the two
timers, and their ASIC bus make the
system really smoke. r still feel this is
probably one of the faster chips produced
today. If you consider the time to develop
a program and then the speed of the
device, the product is hard to beat.

If your company or operation is using
either a NOVIX or a RTX2000 we here at
the Computer Journal would sure like to
hear about them. My last. few months
have been keeping me busy and away
from computers, so I need to rely on our
readers for a change. I have lots of way
the NOVIX can be used, but what I need
most is applications to place them in.

A Good Book
About the only good item I picked up at

the SOG was a book by Bruce Eckel.
Bruce is a writer for MicroC and has writ
ten several articles on using computers to
turn things on and off. Most of his articles
are tutorial in nature and have both har
dware and software features. The first day
of the SOG his shipment of books (he is
self publishing) came just in time to start
selling them. The title is COMPUTER
INTERFACING WITH PASCAL & C,
Hardware + Software Projects on your
PC. For $49.90 you can get both his book
and the accompanying disk of software
source code.

I have been reading the book and find it
very good for beginners. The book is
mostly his older articles all complied in
one place. For advanced hackers the book
would be easy reading and of limited use.
r find the code samples of some use for

(Continued on page 17)

The Computer Journal/Issue #35

